Reviewing ORA and Introducing GSEA

- ORA Review
- ORA pros & cons
- Introducing GSEA
- Consider a scRNA-Seq experiment

ORA Pros vs. Cons

Pros

- Very mature & broadly adopted
- Mathematically straightforward
- Computationally light & very fast
- Few assumptions of inputs or biological gene sets
 - Biological gene sets can include many genes
 - There are many compatible biological gene sets

ORA Pros vs. Cons

Cons

- Have to set the "background" correctly
- Have to pick a cutoff
 - too few interesting genes
 - too many interesting genes
 - biological gene sets straddle the cutoff
- · Much info is discarded

Gene Set Enrichment Analysis (GSEA)

GSEA: Transform DE results to ranked list

GSEA: Consider where bio gene sets fall on my ranked list

Is my gene expression pattern related to other biological gene sets?

Calculate an enrichment score

Calculate an enrichment score

Calculate an enrichment score

Enrichment score →NES, pVal, FDR (oh my!)

The biological gene set is enriched "where"?

NES correction will push the limits a teensy bit, so you may see NES < -1 or > 1

