Objectives

  • Understand advantages of using gene ids when analyzing data.
  • Given a list of ENSEMBL gene ids, add gene symbols and Entrez accessions.
  • Generate common visualizations for differential expression comparisons
  • Understand choosing thresholds for calling differentially expressed genes
  • Discuss options for functional enrichments

Differential Expression Workflow

Here we will generate summary figures for our results and annotate our DE tables.


Summarizing DE results

Part of differential expression analysis is generating visualizations and summaries to share our results. While the DESeq2 tutorial provides examples of other visualizations, a common visualization to summarize DE comparisons are volcano plots.

Tabular DE summary

To summarize DE genes, we first need thresholds for determining significance. A reasonable threshold for linear fold-change is less than -1.5 or greater than 1.5 (which corresponds to log2 fold-change -0.585 and 0.585, respectively. A standard threshold for the adjusted p-value is less than 0.05.

Let’s set these as variables to reuse. This is generally good practice because if these thresholds change upon later consideration, you only have to change them in one location of your script, which will reduce errors from missing some instances in your code.

fc = 1.5
fdr = 0.05

Note: Choosing thresholds

Thresholding on adjusted p-values < 0.05 is a standard threshold, but depending on the research question and/or how the results will be used, other thresholds might be reasonable.

There is a nice Biostar post that discusses choosing adjusted p-value thresholds, including cases where a more relaxed threshold might be appropriate and (some heated) discussion of the dangers of adjusting the choosen threshold after running an analysis. Additionally, there is a Dalmon et al 2012 paper about p-value and fold-change thresholds for microarray data that may help provide some context.

To generate a general summary of the DE results, we can use the summary function to generate a basic summary by DESeq2.

summary(results_plus_vs_minus)

out of 16249 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 38, 0.23%
LFC < 0 (down)     : 53, 0.33%
outliers [1]       : 72, 0.44%
low counts [2]     : 3781, 23%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

However, this summary is simply a text output that we are unable to manipulate. Moreover, notice that the thresholds are not quite as we would like them.

We can use conditional statements to determine the number of genes that pass our thresholds for each comparison, which we can then use to add information to the results table and plots.

Exercise

How would we identify the number of genes with adjusted p-values < 0.05 and a fold-change above 1.5 (or below -1.5)?

Solution

Here is one possible answer:

sum(results_plus_vs_minus$padj < fdr & abs(results_plus_vs_minus$log2FoldChange) >= log2(fc), na.rm = TRUE)
[1] 56


Let’s now create a new column in results_plus_vs_minus to record the significance “call” based on these thresholds. And let’s separate the call by “Up” or “Down”, noting that these are relative to our “Case” condition of “plus”, or iron replete mice. There are many ways to accomplish this, but the following will work:

First define all values as “NS” or “not significant”:

results_plus_vs_minus$call = 'NS'
head(results_plus_vs_minus)
log2 fold change (MLE): condition plus vs minus 
Wald test p-value: condition plus vs minus 
DataFrame with 6 rows and 7 columns
                      baseMean log2FoldChange     lfcSE      stat    pvalue      padj        call
                     <numeric>      <numeric> <numeric> <numeric> <numeric> <numeric> <character>
ENSMUSG00000000001  1489.83039      -0.297760  0.210310 -1.415813  0.156830  0.868577          NS
ENSMUSG00000000028  1748.93544      -0.226421  0.176795 -1.280693  0.200302  0.902896          NS
ENSMUSG00000000031  2151.87715      -0.457628  0.764579 -0.598537  0.549482  0.995389          NS
ENSMUSG00000000037    24.91672      -0.579128  0.561259 -1.031837  0.302148  0.950617          NS
ENSMUSG00000000049     7.78377       0.899490  1.553062  0.579172  0.562473  0.998037          NS
ENSMUSG00000000056 19653.54030       0.174048  0.203529  0.855154  0.392466  0.982477          NS

Next, determine the “Up” and “Down” indices:

up_idx = results_plus_vs_minus$padj < fdr & results_plus_vs_minus$log2FoldChange > log2(fc)
down_idx = results_plus_vs_minus$padj < fdr & results_plus_vs_minus$log2FoldChange < -log2(fc)

Last, use those indices to assign the correct “Up” or “Down” values to the correct indices, and look at the head of the result:

results_plus_vs_minus$call[up_idx] = 'Up'
results_plus_vs_minus$call[down_idx] = 'Down'
head(results_plus_vs_minus)
log2 fold change (MLE): condition plus vs minus 
Wald test p-value: condition plus vs minus 
DataFrame with 6 rows and 7 columns
                      baseMean log2FoldChange     lfcSE      stat    pvalue      padj        call
                     <numeric>      <numeric> <numeric> <numeric> <numeric> <numeric> <character>
ENSMUSG00000000001  1489.83039      -0.297760  0.210310 -1.415813  0.156830  0.868577          NS
ENSMUSG00000000028  1748.93544      -0.226421  0.176795 -1.280693  0.200302  0.902896          NS
ENSMUSG00000000031  2151.87715      -0.457628  0.764579 -0.598537  0.549482  0.995389          NS
ENSMUSG00000000037    24.91672      -0.579128  0.561259 -1.031837  0.302148  0.950617          NS
ENSMUSG00000000049     7.78377       0.899490  1.553062  0.579172  0.562473  0.998037          NS
ENSMUSG00000000056 19653.54030       0.174048  0.203529  0.855154  0.392466  0.982477          NS

Finally, looking ahead to when we plot these values as colors in a volcano plot, let’s make this call column a factor and specify the level ordering:

results_plus_vs_minus$call = factor(results_plus_vs_minus$call, levels = c('Up', 'Down', 'NS'))
head(results_plus_vs_minus)
log2 fold change (MLE): condition plus vs minus 
Wald test p-value: condition plus vs minus 
DataFrame with 6 rows and 7 columns
                      baseMean log2FoldChange     lfcSE      stat    pvalue      padj     call
                     <numeric>      <numeric> <numeric> <numeric> <numeric> <numeric> <factor>
ENSMUSG00000000001  1489.83039      -0.297760  0.210310 -1.415813  0.156830  0.868577       NS
ENSMUSG00000000028  1748.93544      -0.226421  0.176795 -1.280693  0.200302  0.902896       NS
ENSMUSG00000000031  2151.87715      -0.457628  0.764579 -0.598537  0.549482  0.995389       NS
ENSMUSG00000000037    24.91672      -0.579128  0.561259 -1.031837  0.302148  0.950617       NS
ENSMUSG00000000049     7.78377       0.899490  1.553062  0.579172  0.562473  0.998037       NS
ENSMUSG00000000056 19653.54030       0.174048  0.203529  0.855154  0.392466  0.982477       NS

Tip

It is often helpful to include code like this in differential expression analyses so there is a clearly labelled column that makes subsetting and summarizing the results easier.

Now we are in a position to quickly summarize our differential expression results:

table(results_plus_vs_minus$call)

   Up  Down    NS 
   15    41 16193 

We see quickly how many genes were “Up” in iron replete, how many were “Down” in iron replete, and how many were not significant.

Checkpoint: If you successfully added the call column and got the same table result as above, please indicate with a green check. Otherwise use a red x.

Visual DE summary

As described by this Galaxy project tutorial, a volcano plot is a type of scatterplot that shows statistical significance (adjusted p-value) versus magnitude of change (fold change). In a volcano plot, the most upregulated genes are towards the right, the most downregulated genes are towards the left, and the most statistically significant genes are towards the top.

Let’s coerce the DataFrame which was returned by DESeq2::results() into a tibble in anticipation of using the ggplot2 library to plot. We’re also going to modify our results table so that the row names become a separate column, and so that it’s ordered by adjusted p-value.

# Use the rownames argument to create a new column of gene IDs
# Also arrange by adjusted p-value
results_plus_vs_minus = as_tibble(results_plus_vs_minus, rownames = 'id') %>% arrange(padj)

Let’s start with a very simple volcano plot that plots the log2FoldChange on the x-axis, and -log10(padj) on the y-axis.

# Initialize the plot, saving as object 'p' and specifying the plot type as 'geom_point'
p = ggplot(results_plus_vs_minus, aes(x = log2FoldChange, y = -log10(padj))) +
    geom_point()
p
Warning: Removed 3853 rows containing missing values (geom_point).

This is a good start, but, as usual it’s nice to add better labels to the plot with the labs() function:

# Add plot labels and change the theme
p = ggplot(results_plus_vs_minus, aes(x = log2FoldChange, y = -log10(padj))) +
    geom_point() +
    theme_bw() +
    labs(
        title = 'Volcano Plot',
        subtitle = 'Plus vs Minus',
        x = 'log2 fold-change',
        y = '-log10 FDR'
    )
p
Warning: Removed 3853 rows containing missing values (geom_point).

This is a nice improvement. What if we now added some visual guides to indicate where the significant genes are? We can uset he geom_vline() and geom_hline() functions to accomplish this:

# Add threshold lines
p = p +
    geom_vline(
        xintercept = c(0, -log2(fc), log2(fc)),
        linetype = c(1, 2, 2)) +
    geom_hline(
        yintercept = -log10(fdr),
        linetype = 2)
p
Warning: Removed 3853 rows containing missing values (geom_point).

Finally, why not color the points by their significance status? We already created the call column that has the correct values. In this case we can get away with adding a last geom_point() and specifying the correct aesthetic:

p = p + geom_point(aes(color = call))
p
Warning: Removed 3853 rows containing missing values (geom_point).
Removed 3853 rows containing missing values (geom_point).

For additional visualizations for our DE results, we included some example code in the Bonus Content module and this HBC tutorial includes some nice examples.

Subsetting significant genes

You may be interested in identifying only the genes that pass your significance thresholds. A useful way to do this is to conditionally subset your results. Again, we already created the call column, which makes this relatively simple to do.

Note: The tidyverse functions you learned in Software Carpentry could also be alternatively used here.

res_sig = results_plus_vs_minus[results_plus_vs_minus$call != 'NS', ]
head(res_sig)
# A tibble: 6 × 8
  id                 baseMean log2FoldChange lfcSE  stat   pvalue     padj call 
  <chr>                 <dbl>          <dbl> <dbl> <dbl>    <dbl>    <dbl> <fct>
1 ENSMUSG00000032715   1178.          -3.64  0.450 -8.10 5.72e-16 7.08e-12 Down 
2 ENSMUSG00000101645     77.3         10.1   1.33   7.58 3.42e-14 2.12e-10 Up   
3 ENSMUSG00000027313    243.          -2.67  0.410 -6.50 7.96e-11 2.47e- 7 Down 
4 ENSMUSG00000027889   3250.          -0.946 0.145 -6.52 7.00e-11 2.47e- 7 Down 
5 ENSMUSG00000054136     92.6         -3.39  0.526 -6.44 1.19e-10 2.95e- 7 Down 
6 ENSMUSG00000020142    625.          -1.72  0.287 -5.99 2.07e- 9 4.28e- 6 Down 
dim(res_sig)
[1] 56  8

Adding genome annotations

Since, gene symbols can change over time or be ambiguous we use, and recommend, using the EMSEMBL reference genome and ENSEMBL IDs for alignments and we’ve been working with tables and data where all genes are labeled only by their long ENSEMBL ID (you will notice this in the GTF we used in the reference). However, this can make it difficult to quickly look at results for genes of interest.

Luckily, Bioconductor provides many tools and resources to facilitate access to genomic annotation resources.

To start, we will first load the biomaRt library and choose what reference we want to access. For a more detailed walk through of using biomaRt, this training module might be useful, including what to do when annotations are not 1:1 mappings.

Breakout Exercise 2 - Adding gene symbol annotations

Navigate to this page, where we will begin our second breakout exercise together, and then split into smaller groups to finish it.

Outputting results to file

A key aspect of our analysis is preserving the relevant datasets for both our records and for downstream applications, such as functional enrichments.

DE results table

Next we’ll write out our DE results, now that we’ve added information to the table to help us interpret the results, and share with collaborators.

write.csv(results_plus_vs_minus,
          row.names = FALSE,
          na = ".",
          file="outputs/tables/DE_results_plus_vs_minus.csv")

Count tables

The most relevant count tables are the raw, filtered count table that we used as the input for our analysis and the rlog normalized count table that we used for our quality control visualizations.

To output the raw counts, we will need to use the counts function to access the count table from within its larger DESeqDataSet object.

write.csv(counts(dds, normalized = FALSE), file="outputs/tables/DESeq2_raw_counts.csv")

Then we’ll output the rlog count table, using the assay function to access the normalized count table from within its larger DESeqDataSet object.

write.csv(assay(rld), file="outputs/tables/DESeq2_rlog_normalized_counts.csv")

Summary

In this section, we:

  • Generated a volcano plot for our differential expression results
  • Summarized our differential expression results
  • Discussed choosing thresholds
  • Annotated our tables of results to map gene IDs to gene symbols
  • Saved our results to file

Key takeaways

Overall, we’ve run through most of the building blocks needed to run a differential expression analysis and hopefully built up a better understanding of how differential expression comparisons work, particularly how experimental design can impact our results.

What to consider moving forward:

  • How can I control for technical variation in my experimental design?
  • How much variation is expected with a treatment group?
  • What is my RNA quality, and how can that be optimized?
  • Are there quality concerns for my sequencing data?
  • What comparisons are relevant to my biological question?
  • Are there covariates that should be considered?
  • What will a differential expression analysis tell me?

Let’s pause here for general questions


What can we do with our DE results?

Now that we have our DE results, have we address the biological question relevant to the authors of the original paper? On the one hand, yes - we now have two tables of genes that are impacted by change in Mov10 expression. But with two lists of genes alone, it can be difficult to find patterns or understand broader biological impacts.

What if we wanted to find out what genes were signifant in both comparisons? The intersect function, such as implimented as part of the dplyr package would be useful to identify shared significant genes. A venn diagram could be a way to visualize these overlaps.

A way to determine possible broader biological interpretations from the observed DE results, is functional enrichments. There are many options, such as some included in this discussion thread. Other common functional enrichments approaches are gene set enrichment analysis, aka GSEA, Database for Annotation, Visualization and Integrated Discovery, aka DAVID, Ingenity, and [iPathway Guide]

The University of Michigan has license and support for additional tools, such as Cytoscape, so we recommend reaching out to staff with Taubman Library to learn more about resources that might be application toyour research.


Session Info

sessionInfo()
R version 4.2.1 (2022-06-23)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Monterey 12.5

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] biomaRt_2.52.0              data.table_1.14.2           RColorBrewer_1.1-3          ggrepel_0.9.1              
 [5] DESeq2_1.36.0               SummarizedExperiment_1.26.1 Biobase_2.56.0              MatrixGenerics_1.8.1       
 [9] matrixStats_0.62.0          GenomicRanges_1.48.0        GenomeInfoDb_1.32.2         IRanges_2.30.0             
[13] S4Vectors_0.34.0            BiocGenerics_0.42.0         knitr_1.39                  rmarkdown_2.14             
[17] forcats_0.5.1               stringr_1.4.0               dplyr_1.0.9                 purrr_0.3.4                
[21] readr_2.1.2                 tidyr_1.2.0                 tibble_3.1.7                ggplot2_3.3.6              
[25] tidyverse_1.3.2             pheatmap_1.0.12            

loaded via a namespace (and not attached):
 [1] googledrive_2.0.0      colorspace_2.0-3       ellipsis_0.3.2         XVector_0.36.0         fs_1.5.2              
 [6] rstudioapi_0.13        farver_2.1.1           bit64_4.0.5            AnnotationDbi_1.58.0   fansi_1.0.3           
[11] lubridate_1.8.0        xml2_1.3.3             codetools_0.2-18       splines_4.2.1          cachem_1.0.6          
[16] geneplotter_1.74.0     jsonlite_1.8.0         broom_1.0.0            annotate_1.74.0        dbplyr_2.2.1          
[21] png_0.1-7              compiler_4.2.1         httr_1.4.3             backports_1.4.1        assertthat_0.2.1      
[26] Matrix_1.4-1           fastmap_1.1.0          gargle_1.2.0           cli_3.3.0              prettyunits_1.1.1     
[31] htmltools_0.5.3        tools_4.2.1            gtable_0.3.0           glue_1.6.2             GenomeInfoDbData_1.2.8
[36] rappdirs_0.3.3         Rcpp_1.0.9             cellranger_1.1.0       jquerylib_0.1.4        vctrs_0.4.1           
[41] Biostrings_2.64.0      xfun_0.31              rvest_1.0.2            lifecycle_1.0.1        XML_3.99-0.10         
[46] googlesheets4_1.0.0    zlibbioc_1.42.0        scales_1.2.0           vroom_1.5.7            hms_1.1.1             
[51] parallel_4.2.1         curl_4.3.2             yaml_2.3.5             memoise_2.0.1          sass_0.4.2            
[56] stringi_1.7.8          RSQLite_2.2.15         highr_0.9              genefilter_1.78.0      filelock_1.0.2        
[61] BiocParallel_1.30.3    rlang_1.0.4            pkgconfig_2.0.3        bitops_1.0-7           evaluate_0.15         
[66] lattice_0.20-45        labeling_0.4.2         bit_4.0.4              tidyselect_1.1.2       magrittr_2.0.3        
[71] R6_2.5.1               generics_0.1.3         DelayedArray_0.22.0    DBI_1.1.3              pillar_1.8.0          
[76] haven_2.5.0            withr_2.5.0            survival_3.3-1         KEGGREST_1.36.3        RCurl_1.98-1.8        
[81] modelr_0.1.8           crayon_1.5.1           utf8_1.2.2             BiocFileCache_2.4.0    tzdb_0.3.0            
[86] progress_1.2.2         locfit_1.5-9.6         grid_4.2.1             readxl_1.4.0           blob_1.2.3            
[91] reprex_2.0.1           digest_0.6.29          xtable_1.8-4           munsell_0.5.0          bslib_0.4.0           

These materials have been adapted and extended from materials listed above. These are open access materials distributed under the terms of the Creative Commons Attribution license (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

LS0tCnRpdGxlOiAiTW9kdWxlIDExOiBERSBWaXN1YWxpemF0aW9ucyBhbmQgQW5ub3RhdGlvbiIKYXV0aG9yOiAiVU0gQmlvaW5mb3JtYXRpY3MgQ29yZSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgICAgICAgaHRtbF9kb2N1bWVudDoKICAgICAgICAgICAgaW5jbHVkZXM6CiAgICAgICAgICAgICAgICBpbl9oZWFkZXI6IGhlYWRlci5odG1sCiAgICAgICAgICAgIHRoZW1lOiBwYXBlcgogICAgICAgICAgICB0b2M6IHRydWUKICAgICAgICAgICAgdG9jX2RlcHRoOiA0CiAgICAgICAgICAgIHRvY19mbG9hdDogdHJ1ZQogICAgICAgICAgICBudW1iZXJfc2VjdGlvbnM6IGZhbHNlCiAgICAgICAgICAgIGZpZ19jYXB0aW9uOiB0cnVlCiAgICAgICAgICAgIG1hcmtkb3duOiBHRk0KICAgICAgICAgICAgY29kZV9kb3dubG9hZDogdHJ1ZQotLS0KCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+CmJvZHksIHRkIHsKICAgZm9udC1zaXplOiAxOHB4Owp9CmNvZGUucnsKICBmb250LXNpemU6IDEycHg7Cn0KcHJlIHsKICBmb250LXNpemU6IDEycHgKfQo8L3N0eWxlPgoKYGBge3IsIGluY2x1ZGUgPSBGQUxTRX0Kc291cmNlKCIuLi9iaW4vY2h1bmstb3B0aW9ucy5SIikKa25pdHJfZmlnX3BhdGgoIjExLSIpCmBgYAoKPiAjIE9iamVjdGl2ZXMgey51bmxpc3RlZCAudW5udW1iZXJlZH0KPiAqIFVuZGVyc3RhbmQgYWR2YW50YWdlcyBvZiB1c2luZyBnZW5lIGlkcyB3aGVuIGFuYWx5emluZyBkYXRhLgo+ICogR2l2ZW4gYSBsaXN0IG9mIEVOU0VNQkwgZ2VuZSBpZHMsIGFkZCBnZW5lIHN5bWJvbHMgYW5kIEVudHJleiBhY2Nlc3Npb25zLgo+ICogR2VuZXJhdGUgY29tbW9uIHZpc3VhbGl6YXRpb25zIGZvciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBjb21wYXJpc29ucwo+ICogVW5kZXJzdGFuZCBjaG9vc2luZyB0aHJlc2hvbGRzIGZvciBjYWxsaW5nIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCBnZW5lcwo+ICogRGlzY3VzcyBvcHRpb25zIGZvciBmdW5jdGlvbmFsIGVucmljaG1lbnRzCgpgYGB7ciBNb2R1bGVzLCBldmFsPVRSVUUsIGVjaG89RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoREVTZXEyKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkoZ2dyZXBlbCkKbGlicmFyeShSQ29sb3JCcmV3ZXIpCiMgbG9hZCgicmRhdGEvUnVubmluZ0RhdGEuUkRhdGEiKQpgYGAKCiMgRGlmZmVyZW50aWFsIEV4cHJlc3Npb24gV29ya2Zsb3cgey51bmxpc3RlZCAudW5udW1iZXJlZH0KCkhlcmUgd2Ugd2lsbCBnZW5lcmF0ZSBzdW1tYXJ5IGZpZ3VyZXMgZm9yIG91ciByZXN1bHRzIGFuZCBhbm5vdGF0ZSBvdXIgREUgdGFibGVzLgoKIVtdKC4vaW1hZ2VzL3dheWZpbmRlci93YXlmaW5kZXItMTEucG5nKXt3aWR0aD03NSV9CgotLS0KCiMgU3VtbWFyaXppbmcgREUgcmVzdWx0cwoKUGFydCBvZiBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcyBpcyBnZW5lcmF0aW5nIHZpc3VhbGl6YXRpb25zIGFuZCBzdW1tYXJpZXMgdG8gc2hhcmUgb3VyIHJlc3VsdHMuIFdoaWxlIHRoZSBERVNlcTIgdHV0b3JpYWwgcHJvdmlkZXMgW2V4YW1wbGVzIG9mIG90aGVyIHZpc3VhbGl6YXRpb25zXShodHRwOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9kZXZlbC9iaW9jL3ZpZ25ldHRlcy9ERVNlcTIvaW5zdC9kb2MvREVTZXEyLmh0bWwjZXhwbG9yaW5nLWFuZC1leHBvcnRpbmctcmVzdWx0cyksIGEgY29tbW9uIHZpc3VhbGl6YXRpb24gdG8gc3VtbWFyaXplIERFIGNvbXBhcmlzb25zIGFyZSBbdm9sY2FubyBwbG90c10oaHR0cDovL3Jlc291cmNlcy5xaWFnZW5iaW9pbmZvcm1hdGljcy5jb20vbWFudWFscy9jbGNnZW5vbWljc3dvcmtiZW5jaC83NTIvaW5kZXgucGhwP21hbnVhbD1Wb2xjYW5vX3Bsb3RzX2luc3BlY3RpbmdfcmVzdWx0X3N0YXRpc3RpY2FsX2FuYWx5c2lzLmh0bWwpLgoKIyMgVGFidWxhciBERSBzdW1tYXJ5CgpUbyBzdW1tYXJpemUgREUgZ2VuZXMsIHdlIGZpcnN0IG5lZWQgdGhyZXNob2xkcyBmb3IgZGV0ZXJtaW5pbmcgc2lnbmlmaWNhbmNlLiBBIHJlYXNvbmFibGUgdGhyZXNob2xkIGZvciBsaW5lYXIgZm9sZC1jaGFuZ2UgaXMgbGVzcyB0aGFuIC0xLjUgb3IgZ3JlYXRlciB0aGFuIDEuNSAod2hpY2ggY29ycmVzcG9uZHMgdG8gbG9nMiBmb2xkLWNoYW5nZSAtMC41ODUgYW5kIDAuNTg1LCByZXNwZWN0aXZlbHkuIEEgc3RhbmRhcmQgdGhyZXNob2xkIGZvciB0aGUgYWRqdXN0ZWQgcC12YWx1ZSBpcyBsZXNzIHRoYW4gMC4wNS4KCkxldCdzIHNldCB0aGVzZSBhcyB2YXJpYWJsZXMgdG8gcmV1c2UuIFRoaXMgaXMgZ2VuZXJhbGx5IGdvb2QgcHJhY3RpY2UgYmVjYXVzZSBpZiB0aGVzZSB0aHJlc2hvbGRzIGNoYW5nZSB1cG9uIGxhdGVyIGNvbnNpZGVyYXRpb24sIHlvdSBvbmx5IGhhdmUgdG8gY2hhbmdlIHRoZW0gaW4gb25lIGxvY2F0aW9uIG9mIHlvdXIgc2NyaXB0LCB3aGljaCB3aWxsIHJlZHVjZSBlcnJvcnMgZnJvbSBtaXNzaW5nIHNvbWUgaW5zdGFuY2VzIGluIHlvdXIgY29kZS4KCmBgYHtyIFBsb3RTZXR1cDF9CmZjID0gMS41CmZkciA9IDAuMDUKYGBgCgo+ICMgTm90ZTogQ2hvb3NpbmcgdGhyZXNob2xkcyB7LnVubGlzdGVkIC51bm51bWJlcmVkfQo+Cj4gVGhyZXNob2xkaW5nIG9uIGFkanVzdGVkIHAtdmFsdWVzIDwgMC4wNSBpcyBhIHN0YW5kYXJkIHRocmVzaG9sZCwgYnV0IGRlcGVuZGluZyBvbiB0aGUgcmVzZWFyY2ggcXVlc3Rpb24gYW5kL29yIGhvdyB0aGUgcmVzdWx0cyB3aWxsIGJlIHVzZWQsIG90aGVyIHRocmVzaG9sZHMgbWlnaHQgYmUgcmVhc29uYWJsZS4KPgo+IFRoZXJlIGlzIGEgbmljZSBbQmlvc3RhciBwb3N0IHRoYXQgZGlzY3Vzc2VzIGNob29zaW5nIGFkanVzdGVkIHAtdmFsdWUgdGhyZXNob2xkc10oaHR0cHM6Ly93d3cuYmlvc3RhcnMub3JnL3AvMjA5MTE4LyksIGluY2x1ZGluZyBjYXNlcyB3aGVyZSBhIG1vcmUgcmVsYXhlZCB0aHJlc2hvbGQgbWlnaHQgYmUgYXBwcm9wcmlhdGUgYW5kIChzb21lIGhlYXRlZCkgZGlzY3Vzc2lvbiBvZiB0aGUgZGFuZ2VycyBvZiBhZGp1c3RpbmcgdGhlIGNob29zZW4gdGhyZXNob2xkIGFmdGVyIHJ1bm5pbmcgYW4gYW5hbHlzaXMuIEFkZGl0aW9uYWxseSwgdGhlcmUgaXMgYSBbRGFsbW9uIGV0IGFsIDIwMTJdKGh0dHBzOi8vYm1jYmlvaW5mb3JtYXRpY3MuYmlvbWVkY2VudHJhbC5jb20vYXJ0aWNsZXMvMTAuMTE4Ni8xNDcxLTIxMDUtMTMtUzItUzExKSBwYXBlciBhYm91dCBwLXZhbHVlIGFuZCBmb2xkLWNoYW5nZSB0aHJlc2hvbGRzIGZvciBtaWNyb2FycmF5IGRhdGEgdGhhdCBtYXkgaGVscCBwcm92aWRlIHNvbWUgY29udGV4dC4KClRvIGdlbmVyYXRlIGEgZ2VuZXJhbCBzdW1tYXJ5IG9mIHRoZSBERSByZXN1bHRzLCB3ZSBjYW4gdXNlIHRoZSBgc3VtbWFyeWAgZnVuY3Rpb24gdG8gZ2VuZXJhdGUgYSBiYXNpYyBzdW1tYXJ5IGJ5IERFU2VxMi4KCmBgYHtyIERFU2VxMlN1bW1hcnl9CnN1bW1hcnkocmVzdWx0c19wbHVzX3ZzX21pbnVzKQpgYGAKCkhvd2V2ZXIsIHRoaXMgc3VtbWFyeSBpcyBzaW1wbHkgYSB0ZXh0IG91dHB1dCB0aGF0IHdlIGFyZSB1bmFibGUgdG8gbWFuaXB1bGF0ZS4gTW9yZW92ZXIsIG5vdGljZSB0aGF0IHRoZSB0aHJlc2hvbGRzIGFyZSBub3QgcXVpdGUgYXMgd2Ugd291bGQgbGlrZSB0aGVtLgoKV2UgY2FuIHVzZSBjb25kaXRpb25hbCBzdGF0ZW1lbnRzIHRvIGRldGVybWluZSB0aGUgbnVtYmVyIG9mIGdlbmVzIHRoYXQgcGFzcyBvdXIgdGhyZXNob2xkcyBmb3IgZWFjaCBjb21wYXJpc29uLCB3aGljaCB3ZSBjYW4gdGhlbiB1c2UgdG8gYWRkIGluZm9ybWF0aW9uIHRvIHRoZSByZXN1bHRzIHRhYmxlIGFuZCBwbG90cy4KCj4gIyBFeGVyY2lzZSB7LnVubGlzdGVkIC51bm51bWJlcmVkfQo+IEhvdyB3b3VsZCB3ZSBpZGVudGlmeSB0aGUgbnVtYmVyIG9mIGdlbmVzIHdpdGggYWRqdXN0ZWQgcC12YWx1ZXMgPCAwLjA1IGFuZCBhIGZvbGQtY2hhbmdlIGFib3ZlIDEuNSAob3IgYmVsb3cgLTEuNSk/Cgo8ZGV0YWlscz4KPHN1bW1hcnk+U29sdXRpb248L3N1bW1hcnk+CgpIZXJlIGlzIG9uZSBwb3NzaWJsZSBhbnN3ZXI6CgpgYGB7ciBTdGF0U2lnR2VuZXMyfQpzdW0ocmVzdWx0c19wbHVzX3ZzX21pbnVzJHBhZGogPCBmZHIgJiBhYnMocmVzdWx0c19wbHVzX3ZzX21pbnVzJGxvZzJGb2xkQ2hhbmdlKSA+PSBsb2cyKGZjKSwgbmEucm0gPSBUUlVFKQpgYGAKPC9kZXRhaWxzPgo8YnI+CgpMZXQncyBub3cgY3JlYXRlIGEgbmV3IGNvbHVtbiBpbiBgcmVzdWx0c19wbHVzX3ZzX21pbnVzYCB0byByZWNvcmQgdGhlIHNpZ25pZmljYW5jZSAiY2FsbCIgYmFzZWQgb24gdGhlc2UgdGhyZXNob2xkcy4gQW5kIGxldCdzIHNlcGFyYXRlIHRoZSBjYWxsIGJ5ICJVcCIgb3IgIkRvd24iLCBub3RpbmcgdGhhdCB0aGVzZSBhcmUgcmVsYXRpdmUgdG8gb3VyICJDYXNlIiBjb25kaXRpb24gb2YgInBsdXMiLCBvciBpcm9uIHJlcGxldGUgbWljZS4gVGhlcmUgYXJlIG1hbnkgd2F5cyB0byBhY2NvbXBsaXNoIHRoaXMsIGJ1dCB0aGUgZm9sbG93aW5nIHdpbGwgd29yazoKCkZpcnN0IGRlZmluZSBhbGwgdmFsdWVzIGFzICJOUyIgb3IgIm5vdCBzaWduaWZpY2FudCI6CgpgYGB7ciBOU0NvbHVtbn0KcmVzdWx0c19wbHVzX3ZzX21pbnVzJGNhbGwgPSAnTlMnCmhlYWQocmVzdWx0c19wbHVzX3ZzX21pbnVzKQpgYGAKCk5leHQsIGRldGVybWluZSB0aGUgIlVwIiBhbmQgIkRvd24iIGluZGljZXM6CgpgYGB7ciBVcERvd25JbmRpY2VzfQp1cF9pZHggPSByZXN1bHRzX3BsdXNfdnNfbWludXMkcGFkaiA8IGZkciAmIHJlc3VsdHNfcGx1c192c19taW51cyRsb2cyRm9sZENoYW5nZSA+IGxvZzIoZmMpCmRvd25faWR4ID0gcmVzdWx0c19wbHVzX3ZzX21pbnVzJHBhZGogPCBmZHIgJiByZXN1bHRzX3BsdXNfdnNfbWludXMkbG9nMkZvbGRDaGFuZ2UgPCAtbG9nMihmYykKYGBgCgpMYXN0LCB1c2UgdGhvc2UgaW5kaWNlcyB0byBhc3NpZ24gdGhlIGNvcnJlY3QgIlVwIiBvciAiRG93biIgdmFsdWVzIHRvIHRoZSBjb3JyZWN0IGluZGljZXMsIGFuZCBsb29rIGF0IHRoZSBoZWFkIG9mIHRoZSByZXN1bHQ6CgpgYGB7ciBDYWxsQ29sdW1ufQpyZXN1bHRzX3BsdXNfdnNfbWludXMkY2FsbFt1cF9pZHhdID0gJ1VwJwpyZXN1bHRzX3BsdXNfdnNfbWludXMkY2FsbFtkb3duX2lkeF0gPSAnRG93bicKaGVhZChyZXN1bHRzX3BsdXNfdnNfbWludXMpCmBgYAoKRmluYWxseSwgbG9va2luZyBhaGVhZCB0byB3aGVuIHdlIHBsb3QgdGhlc2UgdmFsdWVzIGFzIGNvbG9ycyBpbiBhIHZvbGNhbm8gcGxvdCwgbGV0J3MgbWFrZSB0aGlzIGBjYWxsYCBjb2x1bW4gYSBmYWN0b3IgYW5kIHNwZWNpZnkgdGhlIGxldmVsIG9yZGVyaW5nOgoKYGBge3IgRmFjdG9yQ2FsbH0KcmVzdWx0c19wbHVzX3ZzX21pbnVzJGNhbGwgPSBmYWN0b3IocmVzdWx0c19wbHVzX3ZzX21pbnVzJGNhbGwsIGxldmVscyA9IGMoJ1VwJywgJ0Rvd24nLCAnTlMnKSkKaGVhZChyZXN1bHRzX3BsdXNfdnNfbWludXMpCmBgYAoKPiAjIFRpcCB7LnVubGlzdGVkIC51bm51bWJlcmVkfQo+IEl0IGlzIG9mdGVuIGhlbHBmdWwgdG8gaW5jbHVkZSBjb2RlIGxpa2UgdGhpcyBpbiBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNlcyBzbyB0aGVyZSBpcyBhIGNsZWFybHkgbGFiZWxsZWQgY29sdW1uIHRoYXQgbWFrZXMgc3Vic2V0dGluZyBhbmQgc3VtbWFyaXppbmcgdGhlIHJlc3VsdHMgZWFzaWVyLgoKTm93IHdlIGFyZSBpbiBhIHBvc2l0aW9uIHRvIHF1aWNrbHkgc3VtbWFyaXplIG91ciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiByZXN1bHRzOgoKYGBge3IgVGFibGVDYWxsfQp0YWJsZShyZXN1bHRzX3BsdXNfdnNfbWludXMkY2FsbCkKYGBgCgpXZSBzZWUgcXVpY2tseSBob3cgbWFueSBnZW5lcyB3ZXJlICJVcCIgaW4gaXJvbiByZXBsZXRlLCBob3cgbWFueSB3ZXJlICJEb3duIiBpbiBpcm9uIHJlcGxldGUsIGFuZCBob3cgbWFueSB3ZXJlIG5vdCBzaWduaWZpY2FudC4KCioqQ2hlY2twb2ludCoqOiAqSWYgeW91IHN1Y2Nlc3NmdWxseSBhZGRlZCB0aGUgYGNhbGxgIGNvbHVtbiBhbmQgZ290IHRoZSBzYW1lIHRhYmxlIHJlc3VsdCBhcyBhYm92ZSwgcGxlYXNlIGluZGljYXRlIHdpdGggYSBncmVlbiBjaGVjay4gT3RoZXJ3aXNlIHVzZSBhIHJlZCB4LioKCiMjIFZpc3VhbCBERSBzdW1tYXJ5CgpBcyBkZXNjcmliZWQgYnkgdGhpcyBbR2FsYXh5IHByb2plY3QgdHV0b3JpYWxdKGh0dHBzOi8vZ2FsYXh5cHJvamVjdC5naXRodWIuaW8vdHJhaW5pbmctbWF0ZXJpYWwvdG9waWNzL3RyYW5zY3JpcHRvbWljcy90dXRvcmlhbHMvcm5hLXNlcS12aXotd2l0aC12b2xjYW5vcGxvdC90dXRvcmlhbC5odG1sKSwgYSB2b2xjYW5vIHBsb3QgaXMgYSB0eXBlIG9mIHNjYXR0ZXJwbG90IHRoYXQgc2hvd3Mgc3RhdGlzdGljYWwgc2lnbmlmaWNhbmNlIChhZGp1c3RlZCBwLXZhbHVlKSB2ZXJzdXMgbWFnbml0dWRlIG9mIGNoYW5nZSAoZm9sZCBjaGFuZ2UpLiBJbiBhIHZvbGNhbm8gcGxvdCwgdGhlIG1vc3QgdXByZWd1bGF0ZWQgZ2VuZXMgYXJlIHRvd2FyZHMgdGhlIHJpZ2h0LCB0aGUgbW9zdCBkb3ducmVndWxhdGVkIGdlbmVzIGFyZSB0b3dhcmRzIHRoZSBsZWZ0LCBhbmQgdGhlIG1vc3Qgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBnZW5lcyBhcmUgdG93YXJkcyB0aGUgdG9wLgoKTGV0J3MgY29lcmNlIHRoZSBgRGF0YUZyYW1lYCB3aGljaCB3YXMgcmV0dXJuZWQgYnkgYERFU2VxMjo6cmVzdWx0cygpYCBpbnRvIGEgYHRpYmJsZWAgaW4gYW50aWNpcGF0aW9uIG9mIHVzaW5nIHRoZSBgZ2dwbG90MmAgbGlicmFyeSB0byBwbG90LiBXZSdyZSBhbHNvIGdvaW5nIHRvIG1vZGlmeSBvdXIgcmVzdWx0cyB0YWJsZSBzbyB0aGF0IHRoZSByb3cgbmFtZXMgYmVjb21lIGEgc2VwYXJhdGUgY29sdW1uLCBhbmQgc28gdGhhdCBpdCdzIG9yZGVyZWQgYnkgYWRqdXN0ZWQgcC12YWx1ZS4KCmBgYHtyIFBsb3RTZXR1cDJ9CiMgVXNlIHRoZSByb3duYW1lcyBhcmd1bWVudCB0byBjcmVhdGUgYSBuZXcgY29sdW1uIG9mIGdlbmUgSURzCiMgQWxzbyBhcnJhbmdlIGJ5IGFkanVzdGVkIHAtdmFsdWUKcmVzdWx0c19wbHVzX3ZzX21pbnVzID0gYXNfdGliYmxlKHJlc3VsdHNfcGx1c192c19taW51cywgcm93bmFtZXMgPSAnaWQnKSAlPiUgYXJyYW5nZShwYWRqKQpgYGAKCkxldCdzIHN0YXJ0IHdpdGggYSB2ZXJ5IHNpbXBsZSB2b2xjYW5vIHBsb3QgdGhhdCBwbG90cyB0aGUgYGxvZzJGb2xkQ2hhbmdlYCBvbiB0aGUgeC1heGlzLCBhbmQgYC1sb2cxMChwYWRqKWAgb24gdGhlIHktYXhpcy4KCmBgYHtyIFZvbGNhbm9QbG90fQojIEluaXRpYWxpemUgdGhlIHBsb3QsIHNhdmluZyBhcyBvYmplY3QgJ3AnIGFuZCBzcGVjaWZ5aW5nIHRoZSBwbG90IHR5cGUgYXMgJ2dlb21fcG9pbnQnCnAgPSBnZ3Bsb3QocmVzdWx0c19wbHVzX3ZzX21pbnVzLCBhZXMoeCA9IGxvZzJGb2xkQ2hhbmdlLCB5ID0gLWxvZzEwKHBhZGopKSkgKwogICAgZ2VvbV9wb2ludCgpCnAKYGBgCgpUaGlzIGlzIGEgZ29vZCBzdGFydCwgYnV0LCBhcyB1c3VhbCBpdCdzIG5pY2UgdG8gYWRkIGJldHRlciBsYWJlbHMgdG8gdGhlIHBsb3Qgd2l0aCB0aGUgYGxhYnMoKWAgZnVuY3Rpb246CgpgYGB7ciBWb2xjYW5vUGxvdDJ9CiMgQWRkIHBsb3QgbGFiZWxzIGFuZCBjaGFuZ2UgdGhlIHRoZW1lCnAgPSBnZ3Bsb3QocmVzdWx0c19wbHVzX3ZzX21pbnVzLCBhZXMoeCA9IGxvZzJGb2xkQ2hhbmdlLCB5ID0gLWxvZzEwKHBhZGopKSkgKwogICAgZ2VvbV9wb2ludCgpICsKICAgIHRoZW1lX2J3KCkgKwogICAgbGFicygKICAgICAgICB0aXRsZSA9ICdWb2xjYW5vIFBsb3QnLAogICAgICAgIHN1YnRpdGxlID0gJ1BsdXMgdnMgTWludXMnLAogICAgICAgIHggPSAnbG9nMiBmb2xkLWNoYW5nZScsCiAgICAgICAgeSA9ICctbG9nMTAgRkRSJwogICAgKQpwCmBgYAoKVGhpcyBpcyBhIG5pY2UgaW1wcm92ZW1lbnQuIFdoYXQgaWYgd2Ugbm93IGFkZGVkIHNvbWUgdmlzdWFsIGd1aWRlcyB0byBpbmRpY2F0ZSB3aGVyZSB0aGUgc2lnbmlmaWNhbnQgZ2VuZXMgYXJlPyBXZSBjYW4gdXNldCBoZSBgZ2VvbV92bGluZSgpYCBhbmQgYGdlb21faGxpbmUoKWAgZnVuY3Rpb25zIHRvIGFjY29tcGxpc2ggdGhpczoKCmBgYHtyIFZvbGNhbm9QbG90M30KIyBBZGQgdGhyZXNob2xkIGxpbmVzCnAgPSBwICsKICAgIGdlb21fdmxpbmUoCiAgICAgICAgeGludGVyY2VwdCA9IGMoMCwgLWxvZzIoZmMpLCBsb2cyKGZjKSksCiAgICAgICAgbGluZXR5cGUgPSBjKDEsIDIsIDIpKSArCiAgICBnZW9tX2hsaW5lKAogICAgICAgIHlpbnRlcmNlcHQgPSAtbG9nMTAoZmRyKSwKICAgICAgICBsaW5ldHlwZSA9IDIpCnAKYGBgCgpGaW5hbGx5LCB3aHkgbm90IGNvbG9yIHRoZSBwb2ludHMgYnkgdGhlaXIgc2lnbmlmaWNhbmNlIHN0YXR1cz8gV2UgYWxyZWFkeSBjcmVhdGVkIHRoZSBgY2FsbGAgY29sdW1uIHRoYXQgaGFzIHRoZSBjb3JyZWN0IHZhbHVlcy4gSW4gdGhpcyBjYXNlIHdlIGNhbiBnZXQgYXdheSB3aXRoIGFkZGluZyBhIGxhc3QgYGdlb21fcG9pbnQoKWAgYW5kIHNwZWNpZnlpbmcgdGhlIGNvcnJlY3QgYWVzdGhldGljOgoKYGBge3IgVm9sY2Fub1Bsb3Q0fQpwID0gcCArIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gY2FsbCkpCnAKYGBgCgpGb3IgYWRkaXRpb25hbCB2aXN1YWxpemF0aW9ucyBmb3Igb3VyIERFIHJlc3VsdHMsIHdlIGluY2x1ZGVkIHNvbWUgZXhhbXBsZSBjb2RlIGluIHRoZSBCb251cyBDb250ZW50IG1vZHVsZSBhbmQgdGhpcyBbSEJDIHR1dG9yaWFsXShodHRwczovL2hiY3RyYWluaW5nLmdpdGh1Yi5pby9ER0Vfd29ya3Nob3AvbGVzc29ucy8wNl9ER0VfdmlzdWFsaXppbmdfcmVzdWx0cy5odG1sKSBpbmNsdWRlcyBzb21lIG5pY2UgZXhhbXBsZXMuCgojIyMgU3Vic2V0dGluZyBzaWduaWZpY2FudCBnZW5lcwoKWW91IG1heSBiZSBpbnRlcmVzdGVkIGluIGlkZW50aWZ5aW5nIG9ubHkgdGhlIGdlbmVzIHRoYXQgcGFzcyB5b3VyIHNpZ25pZmljYW5jZSB0aHJlc2hvbGRzLiBBIHVzZWZ1bCB3YXkgdG8gZG8gdGhpcyBpcyB0byBjb25kaXRpb25hbGx5IHN1YnNldCB5b3VyIHJlc3VsdHMuIEFnYWluLCB3ZSBhbHJlYWR5IGNyZWF0ZWQgdGhlIGBjYWxsYCBjb2x1bW4sIHdoaWNoIG1ha2VzIHRoaXMgcmVsYXRpdmVseSBzaW1wbGUgdG8gZG8uCgoqTm90ZTogVGhlIHRpZHl2ZXJzZSBmdW5jdGlvbnMgeW91IGxlYXJuZWQgaW4gU29mdHdhcmUgQ2FycGVudHJ5IGNvdWxkIGFsc28gYmUgYWx0ZXJuYXRpdmVseSB1c2VkIGhlcmUuKgoKYGBge3IgQ29uZGl0aW9uYWxTdWJzZXR9CnJlc19zaWcgPSByZXN1bHRzX3BsdXNfdnNfbWludXNbcmVzdWx0c19wbHVzX3ZzX21pbnVzJGNhbGwgIT0gJ05TJywgXQpoZWFkKHJlc19zaWcpCmRpbShyZXNfc2lnKQpgYGAKCiMjIEFkZGluZyBnZW5vbWUgYW5ub3RhdGlvbnMKClNpbmNlLCBnZW5lIHN5bWJvbHMgY2FuIGNoYW5nZSBvdmVyIHRpbWUgb3IgYmUgYW1iaWd1b3VzIHdlIHVzZSwgYW5kIHJlY29tbWVuZCwgdXNpbmcgdGhlIEVNU0VNQkwgcmVmZXJlbmNlIGdlbm9tZSBhbmQgRU5TRU1CTCBJRHMgZm9yIGFsaWdubWVudHMgYW5kIHdlJ3ZlIGJlZW4gd29ya2luZyB3aXRoIHRhYmxlcyBhbmQgZGF0YSB3aGVyZSBhbGwgZ2VuZXMgYXJlIGxhYmVsZWQgb25seSBieSB0aGVpciBsb25nIEVOU0VNQkwgSUQgKHlvdSB3aWxsIG5vdGljZSB0aGlzIGluIHRoZSBHVEYgd2UgdXNlZCBpbiB0aGUgcmVmZXJlbmNlKS4gSG93ZXZlciwgdGhpcyBjYW4gbWFrZSBpdCBkaWZmaWN1bHQgdG8gcXVpY2tseSBsb29rIGF0IHJlc3VsdHMgZm9yIGdlbmVzIG9mIGludGVyZXN0LgoKTHVja2lseSwgQmlvY29uZHVjdG9yIHByb3ZpZGVzIG1hbnkgdG9vbHMgYW5kIHJlc291cmNlcyB0byBmYWNpbGl0YXRlIGFjY2VzcyB0byBbZ2Vub21pYyBhbm5vdGF0aW9uIHJlc291cmNlc10oaHR0cDovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvZGV2ZWwvd29ya2Zsb3dzL3ZpZ25ldHRlcy9hbm5vdGF0aW9uL2luc3QvZG9jL0Fubm90YXRpb25fUmVzb3VyY2VzLmh0bWwpLgoKVG8gc3RhcnQsIHdlIHdpbGwgZmlyc3QgbG9hZCB0aGUgW2Jpb21hUnQgbGlicmFyeV0oaHR0cHM6Ly9iaW9jb25kdWN0b3Iub3JnL3BhY2thZ2VzLzMuMTQvYmlvYy9odG1sL2Jpb21hUnQuaHRtbCkgYW5kIGNob29zZSB3aGF0IHJlZmVyZW5jZSB3ZSB3YW50IHRvIGFjY2Vzcy4gRm9yIGEgbW9yZSBkZXRhaWxlZCB3YWxrIHRocm91Z2ggb2YgdXNpbmcgYmlvbWFSdCwgW3RoaXMgdHJhaW5pbmcgbW9kdWxlXShodHRwczovL2Jpb2luZm9ybWF0aWNzLWNvcmUtc2hhcmVkLXRyYWluaW5nLmdpdGh1Yi5pby9jcnVrLXN1bW1lci1zY2hvb2wtMjAxOS9STkFzZXEvaHRtbC8wNV9Bbm5vdGF0aW9uX2FuZF9WaXN1YWxpc2F0aW9uLmh0bWwpIG1pZ2h0IGJlIHVzZWZ1bCwgaW5jbHVkaW5nIHdoYXQgdG8gZG8gd2hlbiBhbm5vdGF0aW9ucyBhcmUgbm90IDE6MSBtYXBwaW5ncy4KCj4gIyBCcmVha291dCBFeGVyY2lzZSAyIC0gQWRkaW5nIGdlbmUgc3ltYm9sIGFubm90YXRpb25zIHsudW5saXN0ZWQgLnVubnVtYmVyZWR9Cj4KPiBOYXZpZ2F0ZSB0byBbdGhpc10oTW9kdWxlMTFhX2JyZWFrb3V0Lmh0bWwpIHBhZ2UsIHdoZXJlIHdlIHdpbGwgYmVnaW4gb3VyIHNlY29uZCBicmVha291dCBleGVyY2lzZSB0b2dldGhlciwgYW5kIHRoZW4gc3BsaXQgaW50byBzbWFsbGVyIGdyb3VwcyB0byBmaW5pc2ggaXQuCgojIE91dHB1dHRpbmcgcmVzdWx0cyB0byBmaWxlCgpBIGtleSBhc3BlY3Qgb2Ygb3VyIGFuYWx5c2lzIGlzIHByZXNlcnZpbmcgdGhlIHJlbGV2YW50IGRhdGFzZXRzIGZvciBib3RoIG91ciByZWNvcmRzIGFuZCBmb3IgZG93bnN0cmVhbSBhcHBsaWNhdGlvbnMsIHN1Y2ggYXMgZnVuY3Rpb25hbCBlbnJpY2htZW50cy4KCgojIyBERSByZXN1bHRzIHRhYmxlCgpOZXh0IHdlJ2xsIHdyaXRlIG91dCBvdXIgREUgcmVzdWx0cywgbm93IHRoYXQgd2UndmUgYWRkZWQgaW5mb3JtYXRpb24gdG8gdGhlIHRhYmxlIHRvIGhlbHAgdXMgaW50ZXJwcmV0IHRoZSByZXN1bHRzLCBhbmQgc2hhcmUgd2l0aCBjb2xsYWJvcmF0b3JzLgoKYGBge3IgREVSZXN1bHRzT3VwdXQsIGV2YWwgPSBGQUxTRX0Kd3JpdGUuY3N2KHJlc3VsdHNfcGx1c192c19taW51cywKICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFLAogICAgICAgICAgbmEgPSAiLiIsCiAgICAgICAgICBmaWxlPSJvdXRwdXRzL3RhYmxlcy9ERV9yZXN1bHRzX3BsdXNfdnNfbWludXMuY3N2IikKYGBgCgojIyBDb3VudCB0YWJsZXMKClRoZSBtb3N0IHJlbGV2YW50IGNvdW50IHRhYmxlcyBhcmUgdGhlIHJhdywgZmlsdGVyZWQgY291bnQgdGFibGUgdGhhdCB3ZSB1c2VkIGFzIHRoZSBpbnB1dCBmb3Igb3VyIGFuYWx5c2lzIGFuZCB0aGUgcmxvZyBub3JtYWxpemVkIGNvdW50IHRhYmxlIHRoYXQgd2UgdXNlZCBmb3Igb3VyIHF1YWxpdHkgY29udHJvbCB2aXN1YWxpemF0aW9ucy4KClRvIG91dHB1dCB0aGUgcmF3IGNvdW50cywgd2Ugd2lsbCBuZWVkIHRvIHVzZSB0aGUgYGNvdW50c2AgZnVuY3Rpb24gdG8gYWNjZXNzIHRoZSBjb3VudCB0YWJsZSBmcm9tIHdpdGhpbiBpdHMgbGFyZ2VyIGBERVNlcURhdGFTZXRgIG9iamVjdC4KCmBgYHtyIE91dHB1dENvdW50c1JhdywgZXZhbCA9IEZBTFNFfQp3cml0ZS5jc3YoY291bnRzKGRkcywgbm9ybWFsaXplZCA9IEZBTFNFKSwgZmlsZT0ib3V0cHV0cy90YWJsZXMvREVTZXEyX3Jhd19jb3VudHMuY3N2IikKYGBgCgpUaGVuIHdlJ2xsIG91dHB1dCB0aGUgcmxvZyBjb3VudCB0YWJsZSwgdXNpbmcgdGhlIGBhc3NheWAgZnVuY3Rpb24gdG8gYWNjZXNzIHRoZSBub3JtYWxpemVkIGNvdW50IHRhYmxlIGZyb20gd2l0aGluIGl0cyBsYXJnZXIgYERFU2VxRGF0YVNldGAgb2JqZWN0LgoKYGBge3IgT3V0cHV0Q291bnRzUmxvZywgZXZhbCA9IEZBTFNFfQp3cml0ZS5jc3YoYXNzYXkocmxkKSwgZmlsZT0ib3V0cHV0cy90YWJsZXMvREVTZXEyX3Jsb2dfbm9ybWFsaXplZF9jb3VudHMuY3N2IikKYGBgCgojIFN1bW1hcnkKCkluIHRoaXMgc2VjdGlvbiwgd2U6CgoqIEdlbmVyYXRlZCBhIHZvbGNhbm8gcGxvdCBmb3Igb3VyIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIHJlc3VsdHMKKiBTdW1tYXJpemVkIG91ciBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiByZXN1bHRzCiogRGlzY3Vzc2VkIGNob29zaW5nIHRocmVzaG9sZHMKKiBBbm5vdGF0ZWQgb3VyIHRhYmxlcyBvZiByZXN1bHRzIHRvIG1hcCBnZW5lIElEcyB0byBnZW5lIHN5bWJvbHMKKiBTYXZlZCBvdXIgcmVzdWx0cyB0byBmaWxlCgoKIyBLZXkgdGFrZWF3YXlzCgpPdmVyYWxsLCB3ZSd2ZSBydW4gdGhyb3VnaCBtb3N0IG9mIHRoZSBidWlsZGluZyBibG9ja3MgbmVlZGVkIHRvIHJ1biBhIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2lzIGFuZCBob3BlZnVsbHkgYnVpbHQgdXAgYSBiZXR0ZXIgdW5kZXJzdGFuZGluZyBvZiBob3cgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gY29tcGFyaXNvbnMgd29yaywgcGFydGljdWxhcmx5IGhvdyBleHBlcmltZW50YWwgZGVzaWduIGNhbiBpbXBhY3Qgb3VyIHJlc3VsdHMuCgpXaGF0IHRvIGNvbnNpZGVyIG1vdmluZyBmb3J3YXJkOgoKKiBIb3cgY2FuIEkgY29udHJvbCBmb3IgdGVjaG5pY2FsIHZhcmlhdGlvbiBpbiBteSBleHBlcmltZW50YWwgZGVzaWduPwoqIEhvdyBtdWNoIHZhcmlhdGlvbiBpcyBleHBlY3RlZCB3aXRoIGEgdHJlYXRtZW50IGdyb3VwPwoqIFdoYXQgaXMgbXkgUk5BIHF1YWxpdHksIGFuZCBob3cgY2FuIHRoYXQgYmUgb3B0aW1pemVkPwoqIEFyZSB0aGVyZSBxdWFsaXR5IGNvbmNlcm5zIGZvciBteSBzZXF1ZW5jaW5nIGRhdGE/CiogV2hhdCBjb21wYXJpc29ucyBhcmUgcmVsZXZhbnQgdG8gbXkgYmlvbG9naWNhbCBxdWVzdGlvbj8KKiBBcmUgdGhlcmUgY292YXJpYXRlcyB0aGF0IHNob3VsZCBiZSBjb25zaWRlcmVkPwoqIFdoYXQgd2lsbCBhIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2lzIHRlbGwgbWU/CgoKKipMZXQncyBwYXVzZSBoZXJlIGZvciBnZW5lcmFsIHF1ZXN0aW9ucyoqCgotLS0KCiMgV2hhdCBjYW4gd2UgZG8gd2l0aCBvdXIgREUgcmVzdWx0cz8KCk5vdyB0aGF0IHdlIGhhdmUgb3VyIERFIHJlc3VsdHMsIGhhdmUgd2UgYWRkcmVzcyB0aGUgYmlvbG9naWNhbCBxdWVzdGlvbiByZWxldmFudCB0byB0aGUgYXV0aG9ycyBvZiB0aGUgW29yaWdpbmFsIHBhcGVyXShodHRwOi8vd3d3Lm5jYmkubmxtLm5paC5nb3YvcHVibWVkLzI1NDY0ODQ5KT8gT24gdGhlIG9uZSBoYW5kLCB5ZXMgLSB3ZSBub3cgaGF2ZSB0d28gdGFibGVzIG9mIGdlbmVzIHRoYXQgYXJlIGltcGFjdGVkIGJ5IGNoYW5nZSBpbiBNb3YxMCBleHByZXNzaW9uLiBCdXQgd2l0aCB0d28gbGlzdHMgb2YgZ2VuZXMgYWxvbmUsIGl0IGNhbiBiZSBkaWZmaWN1bHQgdG8gZmluZCBwYXR0ZXJucyBvciB1bmRlcnN0YW5kIGJyb2FkZXIgYmlvbG9naWNhbCBpbXBhY3RzLgoKV2hhdCBpZiB3ZSB3YW50ZWQgdG8gZmluZCBvdXQgd2hhdCBnZW5lcyB3ZXJlIHNpZ25pZmFudCBpbiAqYm90aCogY29tcGFyaXNvbnM/IFRoZSBgaW50ZXJzZWN0YCBmdW5jdGlvbiwgc3VjaCBhcyBpbXBsaW1lbnRlZCBhcyBbcGFydCBvZiB0aGUgZHBseXIgcGFja2FnZV0oaHR0cHM6Ly93d3cuZGF0YXNjaWVuY2VtYWRlc2ltcGxlLmNvbS9pbnRlcnNlY3QtZnVuY3Rpb24tci11c2luZy1kcGx5ci1pbnRlcnNlY3Rpb24tZGF0YS1mcmFtZXMvKSB3b3VsZCBiZSB1c2VmdWwgdG8gaWRlbnRpZnkgc2hhcmVkIHNpZ25pZmljYW50IGdlbmVzLiBBIFt2ZW5uIGRpYWdyYW1dKGh0dHBzOi8vd3d3LnItZ3JhcGgtZ2FsbGVyeS5jb20vMTQtdmVubi1kaWFncmFtbS5odG1sKSBjb3VsZCBiZSBhIHdheSB0byB2aXN1YWxpemUgdGhlc2Ugb3ZlcmxhcHMuCgpBIHdheSB0byBkZXRlcm1pbmUgcG9zc2libGUgW2Jyb2FkZXIgYmlvbG9naWNhbCBpbnRlcnByZXRhdGlvbnNdKGh0dHBzOi8vd3d3LmViaS5hYy51ay90cmFpbmluZy1iZXRhL29ubGluZS9jb3Vyc2VzL2Z1bmN0aW9uYWwtZ2Vub21pY3MtaWktY29tbW9uLXRlY2hub2xvZ2llcy1hbmQtZGF0YS1hbmFseXNpcy1tZXRob2RzL2Jpb2xvZ2ljYWwtaW50ZXJwcmV0YXRpb24tb2YtZ2VuZS1leHByZXNzaW9uLWRhdGEtMi8pIGZyb20gdGhlIG9ic2VydmVkIERFIHJlc3VsdHMsIGlzIGZ1bmN0aW9uYWwgZW5yaWNobWVudHMuIFRoZXJlIGFyZSBtYW55IG9wdGlvbnMsIHN1Y2ggYXMgc29tZSBpbmNsdWRlZCBpbiB0aGlzIFtkaXNjdXNzaW9uIHRocmVhZF0oaHR0cHM6Ly93d3cucmVzZWFyY2hnYXRlLm5ldC9wb3N0L0hvd19jYW5fSV9hbmFseXplX2Ffc2V0X29mX0RFR3NfZGlmZmVyZW50aWFsbHlfZXhwcmVzc2VkX2dlbmVzX3RvX29idGFpbl9pbmZvcm1hdGlvbl9mcm9tX3RoZW0pLiBPdGhlciBjb21tb24gZnVuY3Rpb25hbCBlbnJpY2htZW50cyBhcHByb2FjaGVzIGFyZSBnZW5lIHNldCBlbnJpY2htZW50IGFuYWx5c2lzLCBha2EgW0dTRUFdKGh0dHA6Ly9zb2Z0d2FyZS5icm9hZGluc3RpdHV0ZS5vcmcvZ3NlYS9pbmRleC5qc3ApLCBEYXRhYmFzZSBmb3IgQW5ub3RhdGlvbiwgVmlzdWFsaXphdGlvbiBhbmQgSW50ZWdyYXRlZCBEaXNjb3ZlcnksIGFrYSBbREFWSURdKGh0dHBzOi8vZGF2aWQubmNpZmNyZi5nb3YvKSwgW0luZ2VuaXR5XShodHRwczovL2RpZ2l0YWxpbnNpZ2h0cy5xaWFnZW4uY29tLyksIGFuZCBbaVBhdGh3YXkgR3VpZGVdCgpUaGUgVW5pdmVyc2l0eSBvZiBNaWNoaWdhbiBoYXMgbGljZW5zZSBhbmQgc3VwcG9ydCBmb3IgYWRkaXRpb25hbCB0b29scywgc3VjaCBhcyBDeXRvc2NhcGUsIHNvIHdlIHJlY29tbWVuZCByZWFjaGluZyBvdXQgdG8gc3RhZmYgd2l0aCBbVGF1Ym1hbiBMaWJyYXJ5XShodHRwczovL3d3dy5saWIudW1pY2guZWR1L2xvY2F0aW9ucy1hbmQtaG91cnMvdGF1Ym1hbi1oZWFsdGgtc2NpZW5jZXMtbGlicmFyeS9yZXNlYXJjaC1hbmQtY2xpbmljYWwtc3VwcG9ydCkgdG8gbGVhcm4gbW9yZSBhYm91dCByZXNvdXJjZXMgdGhhdCBtaWdodCBiZSBhcHBsaWNhdGlvbiB0b3lvdXIgcmVzZWFyY2guCgotLS0KCiMgU291cmNlcwoKKiBIQkMgREdFIHRyYWluaW5nIG1vZHVsZSwgcGFydCAxOiBodHRwczovL2hiY3RyYWluaW5nLmdpdGh1Yi5pby9ER0Vfd29ya3Nob3AvbGVzc29ucy8wNF9ER0VfREVTZXEyX2FuYWx5c2lzLmh0bWwKKiBIQkMgREdFIHRyYWluaW5nIG1vZHVsZSwgcGFydCAyOiBodHRwczovL2hiY3RyYWluaW5nLmdpdGh1Yi5pby9ER0Vfd29ya3Nob3AvbGVzc29ucy8wNV9ER0VfREVTZXEyX2FuYWx5c2lzMi5odG1sCiogREVTZXEyIHZpZ25ldHRlOiBodHRwOi8vYmlvY29uZHVjdG9yLm9yZy9wYWNrYWdlcy9kZXZlbC9iaW9jL3ZpZ25ldHRlcy9ERVNlcTIvaW5zdC9kb2MvREVTZXEyLmh0bWwjZGlmZmVyZW50aWFsLWV4cHJlc3Npb24tYW5hbHlzaXMKKiBCaW9jb25kdWN0b3IgR2Vub21pYyBBbm5vdGF0aW9uIHJlc291cmNlczogaHR0cDovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvZGV2ZWwvd29ya2Zsb3dzL3ZpZ25ldHRlcy9hbm5vdGF0aW9uL2luc3QvZG9jL0Fubm90YXRpb25fUmVzb3VyY2VzLmh0bWwKKiBCaW9NYXJ0IHZpZ25ldHRlOiBodHRwczovL2Jpb2NvbmR1Y3Rvci5vcmcvcGFja2FnZXMvcmVsZWFzZS9iaW9jL3ZpZ25ldHRlcy9iaW9tYVJ0L2luc3QvZG9jL2FjY2Vzc2luZ19lbnNlbWJsLmh0bWwKCiMgQWRkaXRpb25hbCBSZXNvdXJjZXMKKiBNSURBUyBSZXByb2R1Y2libGl0eSBIdWI6IGh0dHBzOi8vbWlkYXMudW1pY2guZWR1L3JlcHJvZHVjaWJpbGl0eS1vdmVydmlldy8KKiBBUkMgcmVzb3VyY2VzOiBodHRwczovL2FyYy10cy51bWljaC5lZHUvCiogR2VuZSBTZXQgRW5yaWNobWVudCBSZXNvdXJjZXMgZnJvbSBCaW9jb25kdWN0b3I6IGh0dHBzOi8vYmlvaW5mb3JtYXRpY3MtY29yZS1zaGFyZWQtdHJhaW5pbmcuZ2l0aHViLmlvL2NydWstc3VtbWVyLXNjaG9vbC0yMDE4L1JOQVNlcTIwMTgvaHRtbC8wNl9HZW5lX3NldF90ZXN0aW5nLm5iLmh0bWwKKiBVc2luZyBIVFNlcSBkYXRhIHdpdGggREVTZXEyOiBodHRwczovL2FuZ3VzLnJlYWR0aGVkb2NzLmlvL2VuLzIwMTkvZGlmZi1leC1hbmQtdml6Lmh0bWwKKiBEZXRhaWxlZCBSTkEtc2VxIGFuYWx5c2lzIHBhcGVyOiBodHRwczovL3d3dy5uY2JpLm5sbS5uaWguZ292L3BtYy9hcnRpY2xlcy9QTUM2MDk2MzQ2LwoqIE92ZXJ2aWV3IG9mIFJOQS1zZXEgYW5hbHlzaXMgY29uc2lkZXJhdGlvbnM6IGh0dHBzOi8vYWNhZGVtaWMtb3VwLWNvbS5wcm94eS5saWIudW1pY2guZWR1L2JmZy9hcnRpY2xlLzE0LzIvMTMwLzI1NzM3MAoqIEFsdGVybmF0aXZlIG92ZXJ2aWV3IG9mIERFU2VxMiwgaW5jbHVkaW5nIHZpc3VhbGl6YXRpb25zIGFuZCBmdW5jdGlvbmFsIGVucmljaG1lbnRzOiBodHRwOi8vZHB1dGhpZXIuZ2l0aHViLmlvL2pnYjcxZS1wb2x5dGVjaC1iaW9pbmZvLWFwcC9wcmFjdGljYWwvcm5hLXNlcV9SL3JuYXNlcV9kaWZmX1NuZjIuaHRtbAoKLS0tCgpgYGB7ciBXcml0ZU91dC5SRGF0YSwgZXZhbD1UUlVFLCBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQojIEhpZGRlbiBjb2RlIGJsb2NrIHRvIHdyaXRlIG91dCBkYXRhIGZvciBrbml0dGluZwojIHNhdmUuaW1hZ2UoZmlsZSA9ICJyZGF0YS9SdW5uaW5nRGF0YV9GdWxsLlJEYXRhIikKYGBgCgojIFNlc3Npb24gSW5mbwpgYGB7ciBTZXNzaW9uSW5mb30Kc2Vzc2lvbkluZm8oKQpgYGAKCi0tLQoKVGhlc2UgbWF0ZXJpYWxzIGhhdmUgYmVlbiBhZGFwdGVkIGFuZCBleHRlbmRlZCBmcm9tIG1hdGVyaWFscyBsaXN0ZWQgYWJvdmUuIFRoZXNlIGFyZSBvcGVuIGFjY2VzcyBtYXRlcmlhbHMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIHRlcm1zIG9mIHRoZSBbQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbiBsaWNlbnNlIChDQyBCWSA0LjApXShodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS80LjAvKSwgd2hpY2ggcGVybWl0cyB1bnJlc3RyaWN0ZWQgdXNlLCBkaXN0cmlidXRpb24sIGFuZCByZXByb2R1Y3Rpb24gaW4gYW55IG1lZGl1bSwgcHJvdmlkZWQgdGhlIG9yaWdpbmFsIGF1dGhvciBhbmQgc291cmNlIGFyZSBjcmVkaXRlZC4K