Workflow Overview


wayfinder

Introduction

Differential expression comparison is a key step to addressing the biological question at hand for the experiment, namely what genes might be contributing to the aberrant bone formation during healing that was observed in this experiment.

A. For differential expression, we consider a single cluster at a time.
B. For the cluster of interest, the cells are partitioned into case vs control (or other appropriate groupings) and expression compared across all genes.
C. Comparisons produce lists and visualizations of differently expressed genes across conditions.


As a reminder, our data includes cells isolated from issue from day 0 (prior to injury) as controls, and days 7 and 21 post-injury as experimental conditions.

We already introduced DE comparisons in the marker identification section of this workshop, but here we will show how to run comparisons between experimental conditions for each annotated cluster.

Objectives

  • Run cell-level differential expression comparisons
  • Run sample level differential expression comparisons

Differential Expression

For single-cell data there are generally two types approaches for running differential expression - either a cell-level or sample-level approach.

For cell-level comparisons, simpler statistical methods like a t-test or the Wilcoxon rank-sum test or single-cell specific methods that models cells individually like MAST can be used.

As mentioned earlier, many of the tools developed for bulk RNA-seq have been shown to have good performance for single-cell data, such as EdgeR or DESeq2, particularly when the count data is aggregated into sample-level “pseudobulk” values for each cluster source.

As discussed in the single-cell best practices book and in the Ouyang Lab’s marker gene identification materials, there are active benchmarking efforts and threshold considerations for single-cell data.

Standard comparisons

First we’ll run cell-level comparisons for our data for the pericyte cluster, starting with cells from the D21 vs D7 conditions. We’ll need to ensure our cells are labeled to reflect both the cluster and condition identities before running our comparison using FindMarker() and summarizing the results:

##### Day 3  - Differential Expression Analysis

# Compare pericyte cluster D21 v D7 ---------------------------------------
# set up combined label of day + celltype & assign as identities
geo_so$day.celltype = paste(geo_so$day, geo_so$cell_type, sep = '_')
# check labels
unique(geo_so$day.celltype)
 [1] "Day0_Fibroblast"                     "Day0_Stem Cell"                      "Day0_Macrophage"                     "Day0_Pericyte"                       "Day0_Endothelial"                   
 [6] "Day0_Hematopoietic stem cell"        "Day0_Monocyte"                       "Day0_CD8+ T Cell"                    "Day0_Mesenchymal stem/stromal cell"  "Day0_Unknown"                       
[11] "Day0_Erythroid"                      "Day0_Muscle Satellite Cell"          "Day0_Regulatory T Cell"              "Day0_Inflammatory macrophage"        "Day21_Mesenchymal stem/stromal cell"
[16] "Day21_Hematopoietic stem cell"       "Day21_Monocyte"                      "Day21_Fibroblast"                    "Day21_Pericyte"                      "Day21_Endothelial"                  
[21] "Day21_Stem Cell"                     "Day21_Muscle Satellite Cell"         "Day21_Macrophage"                    "Day21_Regulatory T Cell"             "Day21_Unknown"                      
[26] "Day21_Erythroid"                     "Day21_Inflammatory macrophage"       "Day21_CD8+ T Cell"                   "Day7_Endothelial"                    "Day7_Monocyte"                      
[31] "Day7_Erythroid"                      "Day7_Pericyte"                       "Day7_Fibroblast"                     "Day7_Macrophage"                     "Day7_Hematopoietic stem cell"       
[36] "Day7_Inflammatory macrophage"        "Day7_Stem Cell"                      "Day7_Mesenchymal stem/stromal cell"  "Day7_Unknown"                        "Day7_CD8+ T Cell"                   
[41] "Day7_Regulatory T Cell"              "Day7_Muscle Satellite Cell"         
# Reset cell identities to the combined condition + cluster label
Idents(geo_so) = 'day.celltype'

# run comparison for D21 vs D0, using wilcoxon test
de_cell_pericyte_D21_vs_D7 = FindMarkers(
    object = geo_so,
    slot = 'data', test = 'wilcox',
    ident.1 = 'Day21_Pericyte', ident.2 = 'Day7_Pericyte')

head(de_cell_pericyte_D21_vs_D7)
                p_val avg_log2FC pct.1 pct.2     p_val_adj
Prelp    0.000000e+00  2.5221214 0.739 0.218  0.000000e+00
Fmod     0.000000e+00  2.3134918 0.872 0.470  0.000000e+00
Gm10076  0.000000e+00 -1.2106283 0.811 0.964  0.000000e+00
Tpt1     0.000000e+00  0.7932864 0.997 0.983  0.000000e+00
Cilp2   1.070023e-282  5.7574478 0.370 0.013 2.189909e-278
Wfdc1   1.079704e-277  5.7472348 0.349 0.008 2.209722e-273
# Add rownames as a column for output
de_cell_pericyte_D21_vs_D7$gene = rownames(de_cell_pericyte_D21_vs_D7)

# summarize our results
table(de_cell_pericyte_D21_vs_D7$p_val_adj < 0.05 & abs(de_cell_pericyte_D21_vs_D7$avg_log2FC) > 1.5)

FALSE  TRUE 
 9209   520 
write_csv(de_cell_pericyte_D21_vs_D7, file = 'results/tables/de_standard_pericyte_D21_vs_D7.csv')

In the first 3 lines of the above code block we can see the changes to the schematic:

Image: Schematic after setting the Idents().
Image: Schematic after setting the Idents().

Note - the avg_log2FC threshold of 1.5 we use here are quite stringent as the default log2FC threshold for the function is 0.25. However the default threshold corresponds to only a 19% difference in RNA levels, which is quite permissive.

If there is enough time - we can also compare between cells from the D7 and D0 conditions.

# Compare pericyte cluster D7 v D0 ----------------------------------------
de_cell_pericyte_D7_vs_D0 = FindMarkers(
    object = geo_so,
    slot = 'data', test = 'wilcox',
    ident.1 = 'Day7_Pericyte', ident.2 = 'Day0_Pericyte')

head(de_cell_pericyte_D7_vs_D0)
              p_val avg_log2FC pct.1 pct.2     p_val_adj
Chad  2.647097e-216  -9.582188 0.002 0.319 5.417549e-212
Vit   5.129542e-208  -6.306605 0.007 0.412 1.049812e-203
C7    6.987318e-205  -9.272483 0.002 0.311 1.430024e-200
Myoc  6.923596e-189  -7.914476 0.005 0.353 1.416983e-184
Cilp2 5.532521e-183  -7.225177 0.013 0.445 1.132286e-178
Ptx4  1.801157e-177  -6.682222 0.004 0.319 3.686248e-173
# Add rownames as a column for output
de_cell_pericyte_D7_vs_D0$gene = rownames(de_cell_pericyte_D7_vs_D0)

# summarize results
table(de_cell_pericyte_D7_vs_D0$p_val_adj < 0.05 & abs(de_cell_pericyte_D7_vs_D0$avg_log2FC) > 1.5)

FALSE  TRUE 
10335  1141 

This same approach can be extended to run pairwise comparisons between conditions for each annotated cluster of interest.

Pseudobulk comparisons

With advances in the technology as well as decreased sequencing costs allowing for larger scale single-cell experiments (that include replicates), along with a study by Squair et al (2021) that highlighted the possibility of inflated false discovery rates for the cell-level approaches since cells isolated from the same sample are unlikely to be statistically independent source the use of sample-level or “psuedobulk” can be advantageous.

We’ll run psuedobulk comparisons for our data for the monocyte cluster, starting with the D21 vs D0 conditions. We’ll need to generate the aggregated counts first (ensuring that we are grouping cells by replicate labels), before labeling the cells to reflect the cluster and condition. Then we will run our comparison using FindMarker() but specifying DESeq2 as our method before summarizing the results:

# Create pseudobulk object -------------------------------------------------
pseudo_catch_so = AggregateExpression(geo_so, assays = 'RNA', return.seurat = TRUE, group.by = c('cell_type', 'day', 'replicate'))

# Set up labels to use for comparisons & assign as cell identities
pseudo_catch_so$day.celltype = paste(pseudo_catch_so$day, pseudo_catch_so$cell_type, sep = '_')
Idents(pseudo_catch_so) = 'day.celltype'

# Run pseudobulk comparison between Day 21 and Day 0, using DESeq2
de_pseudo_pericyte_D21_vs_D7 = FindMarkers(
    object = pseudo_catch_so, 
    ident.1 = 'Day21_Pericyte', ident.2 = 'Day7_Pericyte', 
    test.use = 'DESeq2')

# Take a look at the table
head(de_pseudo_pericyte_D21_vs_D7)
               p_val avg_log2FC pct.1 pct.2     p_val_adj
Cilp2  3.126004e-224   2.802487     1     1 8.280473e-220
Cd55   1.165071e-123   1.232658     1     1 3.086157e-119
Ltbp4  3.095745e-115   1.732792     1     1 8.200318e-111
Prelp   1.681209e-99   2.353650     1     1  4.453353e-95
Lbp     2.050068e-94   1.863180     1     1  5.430426e-90
Prss23  5.529743e-92   1.600028     1     1  1.464774e-87
# Add rownames as a column for output
de_pseudo_pericyte_D21_vs_D7$gene = rownames(de_pseudo_pericyte_D21_vs_D7)

# look at results, using the same thresholds
table(de_pseudo_pericyte_D21_vs_D7$p_val_adj < 0.05 & abs(de_pseudo_pericyte_D21_vs_D7$avg_log2FC) > 1.5)

FALSE  TRUE 
23827    52 
# output results
write_csv(de_pseudo_pericyte_D21_vs_D7, file = 'results/tables/de_pseudo_pericyte_D21_vs_D7.csv')

Since we’re working with pseudobulk data, unlike in the marker identification section, there is no percentage of cells expressing to need to represent so we can summarize our DE results with a volcano plot:

# Make a volcano plot of pseudobulk diffex results ------------------------
pseudo_pericyte_D21_vs_D7_volcano = ggplot(de_pseudo_pericyte_D21_vs_D7, aes(x = avg_log2FC, y = -log10(p_val))) + geom_point()
pseudo_pericyte_D21_vs_D7_volcano

ggsave(filename = 'results/figures/volcano_de_pseudo_pericyte_D21_vs_D0.png', plot = pseudo_pericyte_D21_vs_D7_volcano, width = 7, height = 7, units = 'in')

Further examining DE results

We can also overlay the expression of interesting differentially expressed genes back onto our UMAP plots to highlight the localization and possible function, again using the FeaturePlot function.

# UMAP feature plot of Cd55 gene ------------------------------------------
FeaturePlot(geo_so, features = "Cd55", split.by = "day")

So we found Cd55 based on differential expression comparison in the Pericyte population between Day 7 and Day 21 but in looking at the Feature plot of expression, we also see high expression in a subset of cells on Day 0. This interesting, since according to Shin et al (2019), CD55 regulates bone mass in mice.

It also looks like there is a high percentage of expression in some of the other precursor populations on the top right of our plots, which is interesting and might suggest an interesting subpopulation that we might try to identify, particularly given the role of this gene and our interest in determining why abberant bone can form after injury.

Next steps

While looking at individual genes can reveal interesting patterns like in the case of Cd55, it’s not a very efficient process. So after running ‘standard’ and/or psuedobulk differential expression comparisons, we can use the same types of tools used downstream of bulk RNA-seq to interpret these results, such as GO term enrichment, KEGG pathway enrichment, and GSEA with mSigDB.

Save our progress

We’ll save the scCATCH object. The Seurat object has not been changed in this module.

# Save Seurat object ------------------------------------------------------
saveRDS(geo_so, file = 'results/rdata/geo_so_sct_integrated_final.rds')

Downstream approaches

Beyond differential expression within clusters and , there are many other possible avenues of exploration and analysis for scRNA-seq data. Including, but not limited to:

We would recommend looking for studies in similar tissues or experimental questions and see what kind of approaches and tools were used to answer questions related to your biological question

Summary

Reviewing these results should allow us to identify genes of interest that are impacted by injury and in the context of the cell-types in which they are differentially expressed, formalize some hypotheses for what cell-types or biological processes might be contributing to aberrant bone formation.


These materials have been adapted and extended from materials listed above. These are open access materials distributed under the terms of the Creative Commons Attribution license (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.




Previous lesson Top of this lesson Workshop Wrap Up
LS0tCnRpdGxlOiAiRGlmZmVyZW50aWFsIEV4cHJlc3Npb24gQW5hbHlzaXMiCmF1dGhvcjogIlVNIEJpb2luZm9ybWF0aWNzIENvcmUiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogICAgICAgIGh0bWxfZG9jdW1lbnQ6CiAgICAgICAgICAgIGluY2x1ZGVzOgogICAgICAgICAgICAgICAgaW5faGVhZGVyOiBoZWFkZXIuaHRtbAogICAgICAgICAgICB0aGVtZTogcGFwZXIKICAgICAgICAgICAgdG9jOiB0cnVlCiAgICAgICAgICAgIHRvY19kZXB0aDogNAogICAgICAgICAgICB0b2NfZmxvYXQ6IHRydWUKICAgICAgICAgICAgbnVtYmVyX3NlY3Rpb25zOiBmYWxzZQogICAgICAgICAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgICAgICAgICBtYXJrZG93bjogR0ZNCiAgICAgICAgICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgo8c3R5bGUgdHlwZT0idGV4dC9jc3MiPgpib2R5LCB0ZCB7CiAgIGZvbnQtc2l6ZTogMThweDsKfQpjb2RlLnJ7CiAgZm9udC1zaXplOiAxMnB4Owp9CnByZSB7CiAgZm9udC1zaXplOiAxMnB4Cn0KCnRhYmxlLmZpZywgdGguZmlnLCB0ZC5maWcgewogIGJvcmRlcjogMXB4IHNvbGlkIGJsYWNrOwogIGJvcmRlci1jb2xsYXBzZTogY29sbGFwc2U7CiAgcGFkZGluZzogMTVweDsKfQo8L3N0eWxlPgoKYGBge3Iga2xpcHB5LCBlY2hvPUZBTFNFLCBpbmNsdWRlPVRSVUV9CmtsaXBweTo6a2xpcHB5KGxhbmcgPSBjKCJyIiwgIm1hcmtkb3duIiwgImJhc2giKSwgcG9zaXRpb24gPSBjKCJ0b3AiLCAicmlnaHQiKSkKYGBgCgpgYGB7ciwgaW5jbHVkZSA9IEZBTFNFfQpzb3VyY2UoIi4uL2Jpbi9jaHVuay1vcHRpb25zLlIiKQprbml0cl9maWdfcGF0aCgiMDgtRGlmZmVyZW50aWFsRXhwcmVzc2lvbi8wOC0iKQpgYGAKCiMgV29ya2Zsb3cgT3ZlcnZpZXcgey51bmxpc3RlZCAudW5udW1iZXJlZH0KCjxici8+CjxpbWcgc3JjPSJpbWFnZXMvd2F5ZmluZGVyL3dheWZpbmRlci5wbmciIGFsdD0id2F5ZmluZGVyIiBzdHlsZT0iaGVpZ2h0OiA0MDBweDsiLz4KPGJyLz4KPGJyLz4KCiMgSW50cm9kdWN0aW9uCgpEaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBjb21wYXJpc29uIGlzIGEga2V5IHN0ZXAgdG8gYWRkcmVzc2luZyB0aGUgYmlvbG9naWNhbCBxdWVzdGlvbiBhdCBoYW5kIGZvciB0aGUgZXhwZXJpbWVudCwgbmFtZWx5IHdoYXQgZ2VuZXMgbWlnaHQgYmUgY29udHJpYnV0aW5nIHRvIHRoZSBhYmVycmFudCBib25lIGZvcm1hdGlvbiBkdXJpbmcgaGVhbGluZyB0aGF0IHdhcyBvYnNlcnZlZCBpbiB0aGlzIGV4cGVyaW1lbnQuCgo8dGFibGUgY2xhc3M9J2ZpZyc+Cjx0ciBjbGFzcz0nZmlnJz48dGQgY2xhc3M9J2ZpZyc+IVtdKGltYWdlcy9ncmFwaGljYWxfYWJzdHJhY3RzL2dyYXBoaWNhbF9hYnN0cmFjdF9kaWZmZXgucG5nKTwvdGQ+PC90cj4KPHRyIGNsYXNzPSdmaWcnPjx0ZCBjbGFzcz0nZmlnJz5BLiBGb3IgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24sIHdlIGNvbnNpZGVyIGEgc2luZ2xlIGNsdXN0ZXIgYXQgYSB0aW1lLiA8YnIvPgpCLiBGb3IgdGhlIGNsdXN0ZXIgb2YgaW50ZXJlc3QsIHRoZSBjZWxscyBhcmUgcGFydGl0aW9uZWQgaW50byBjYXNlIHZzIGNvbnRyb2wgKG9yIG90aGVyIGFwcHJvcHJpYXRlIGdyb3VwaW5ncykgYW5kIGV4cHJlc3Npb24gY29tcGFyZWQgYWNyb3NzIGFsbCBnZW5lcy4gPGJyLz4KQy4gQ29tcGFyaXNvbnMgcHJvZHVjZSBsaXN0cyBhbmQgdmlzdWFsaXphdGlvbnMgb2YgZGlmZmVyZW50bHkgZXhwcmVzc2VkIGdlbmVzIGFjcm9zcyBjb25kaXRpb25zLgo8L3RkPjwvdHI+CjwvdGFibGU+Cjxici8+CgpBcyBhIHJlbWluZGVyLCBvdXIgZGF0YSBpbmNsdWRlcyBjZWxscyBpc29sYXRlZCBmcm9tIGlzc3VlIGZyb20gZGF5IDAgKHByaW9yIHRvIGluanVyeSkgYXMgY29udHJvbHMsIGFuZCBkYXlzIDcgYW5kIDIxIHBvc3QtaW5qdXJ5IGFzIGV4cGVyaW1lbnRhbCBjb25kaXRpb25zLgoKIVtdKC4vaW1hZ2VzL2N1cnJpY3VsdW0vZXhwZXJpbWVudGFsX2Rlc2lnbi5qcGcpCgpXZSBhbHJlYWR5IGludHJvZHVjZWQgREUgY29tcGFyaXNvbnMgaW4gdGhlIFttYXJrZXIgaWRlbnRpZmljYXRpb24gc2VjdGlvbiBvZiB0aGlzIHdvcmtzaG9wXSgwNi1NYXJrZXJWaXN1YWxpemF0aW9uLmh0bWwpLCBidXQgaGVyZSB3ZSB3aWxsIHNob3cgaG93IHRvIHJ1biBjb21wYXJpc29ucyBiZXR3ZWVuIGV4cGVyaW1lbnRhbCBjb25kaXRpb25zIGZvciBlYWNoIGFubm90YXRlZCBjbHVzdGVyLgoKIyMgT2JqZWN0aXZlcwoKPCEtLUFkZCBzcGVjaWZpYyBnb2FscyBmb3Igc2VjdGlvbi0tPgotIFJ1biBjZWxsLWxldmVsIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGNvbXBhcmlzb25zCi0gUnVuIHNhbXBsZSBsZXZlbCBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBjb21wYXJpc29ucwoKLS0tLQoKYGBge3IsIHJlYWRfcmRzX2hpZGRlbiwgZWNobyA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0KaWYoIWV4aXN0cygnZ2VvX3NvJykpIHsKICBsaWJyYXJ5KFNldXJhdCkKICBsaWJyYXJ5KEJQQ2VsbHMpCiAgbGlicmFyeSh0aWR5dmVyc2UpCgogIG9wdGlvbnMoZnV0dXJlLmdsb2JhbHMubWF4U2l6ZSA9IDFlOSkKCiAgZ2VvX3NvID0gcmVhZFJEUygncmVzdWx0cy9yZGF0YS9nZW9fc29fc2N0X2ludGVncmF0ZWRfd2l0aF9jYXRjaC5yZHMnKQp9CmBgYAoKIyBEaWZmZXJlbnRpYWwgRXhwcmVzc2lvbgoKRm9yIHNpbmdsZS1jZWxsIGRhdGEgdGhlcmUgYXJlIGdlbmVyYWxseSB0d28gdHlwZXMgYXBwcm9hY2hlcyBmb3IgcnVubmluZyBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiAtIGVpdGhlciBhIGNlbGwtbGV2ZWwgb3Igc2FtcGxlLWxldmVsIGFwcHJvYWNoLiAKCkZvciBjZWxsLWxldmVsIGNvbXBhcmlzb25zLCBzaW1wbGVyIHN0YXRpc3RpY2FsIG1ldGhvZHMgbGlrZSBhIHQtdGVzdCBvciB0aGUgV2lsY294b24gcmFuay1zdW0gdGVzdCBvciBzaW5nbGUtY2VsbCBzcGVjaWZpYyBtZXRob2RzIHRoYXQgbW9kZWxzIGNlbGxzIGluZGl2aWR1YWxseSBsaWtlIFtNQVNUXShodHRwczovL2RvaS5vcmcvMTAuMTE4Ni9zMTMwNTktMDE1LTA4NDQtNSkgY2FuIGJlIHVzZWQuIAoKQXMgbWVudGlvbmVkIGVhcmxpZXIsIG1hbnkgb2YgdGhlIHRvb2xzIGRldmVsb3BlZCBmb3IgYnVsayBSTkEtc2VxIGhhdmUgYmVlbiBzaG93biB0byBoYXZlIGdvb2QgcGVyZm9ybWFuY2UgZm9yIHNpbmdsZS1jZWxsIGRhdGEsIHN1Y2ggYXMgRWRnZVIgb3IgREVTZXEyLCBwYXJ0aWN1bGFybHkgd2hlbiB0aGUgY291bnQgZGF0YSBpcyBhZ2dyZWdhdGVkIGludG8gc2FtcGxlLWxldmVsICJwc2V1ZG9idWxrIiB2YWx1ZXMgZm9yIGVhY2ggY2x1c3RlciBbc291cmNlXShodHRwczovL3d3dy5zYy1iZXN0LXByYWN0aWNlcy5vcmcvY29uZGl0aW9ucy9kaWZmZXJlbnRpYWxfZ2VuZV9leHByZXNzaW9uLmh0bWwpLiAKCkFzIGRpc2N1c3NlZCBpbiB0aGUgW3NpbmdsZS1jZWxsIGJlc3QgcHJhY3RpY2VzIGJvb2tdKGh0dHBzOi8vd3d3LnNjLWJlc3QtcHJhY3RpY2VzLm9yZy9jb25kaXRpb25zL2RpZmZlcmVudGlhbF9nZW5lX2V4cHJlc3Npb24uaHRtbCkgYW5kIGluIHRoZSBbT3V5YW5nIExhYidzIG1hcmtlciBnZW5lIGlkZW50aWZpY2F0aW9uIG1hdGVyaWFsc10oaHR0cHM6Ly9vdXlhbmdsYWIuY29tL3NpbmdsZWNlbGwvY2x1c3QuaHRtbCNzZWM6ZGlmZmV4cHIpLCB0aGVyZSBhcmUgYWN0aXZlIGJlbmNobWFya2luZyBlZmZvcnRzIGFuZCB0aHJlc2hvbGQgY29uc2lkZXJhdGlvbnMgZm9yIHNpbmdsZS1jZWxsIGRhdGEuCgo8IS0tIGFkZCBtb3JlIGluIGRlcHRoIG1vZGVsIGNvbXBhcmlzb25zIG9wdGlvbnMgbGF0ZXI/CiMjIE1vZGVsIG9wdGlvbnMKCldpbGNveG9uIChkZWZhdWx0KSwgREVTZXEyLCBNQVNULCBldGMuCi0tPgoKIyMgU3RhbmRhcmQgY29tcGFyaXNvbnMKCkZpcnN0IHdlJ2xsIHJ1biBjZWxsLWxldmVsIGNvbXBhcmlzb25zIGZvciBvdXIgZGF0YSBmb3IgdGhlIHBlcmljeXRlIGNsdXN0ZXIsIHN0YXJ0aW5nIHdpdGggY2VsbHMgZnJvbSB0aGUgRDIxIHZzIEQ3IGNvbmRpdGlvbnMuIFdlJ2xsIG5lZWQgdG8gZW5zdXJlIG91ciBjZWxscyBhcmUgbGFiZWxlZCB0byByZWZsZWN0IGJvdGggdGhlIGNsdXN0ZXIgYW5kIGNvbmRpdGlvbiBpZGVudGl0aWVzIGJlZm9yZSBydW5uaW5nIG91ciBjb21wYXJpc29uIHVzaW5nIGBGaW5kTWFya2VyKClgIGFuZCBzdW1tYXJpemluZyB0aGUgcmVzdWx0czoKCjwhLS0gYWRkIFVNQVAgd2l0aCBmYWNldHMgYnkgZ3JvdXBzIHRvIHNob3cgd2hhdCdzIGJlaW5nIGNvbXBhcmVkPyAtLT4KCmBgYHtyLCBkZV93aWxjb3gxLCBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRX0KIyMjIyMgRGF5IDMgIC0gRGlmZmVyZW50aWFsIEV4cHJlc3Npb24gQW5hbHlzaXMKCiMgQ29tcGFyZSBwZXJpY3l0ZSBjbHVzdGVyIEQyMSB2IEQ3IC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQojIHNldCB1cCBjb21iaW5lZCBsYWJlbCBvZiBkYXkgKyBjZWxsdHlwZSAmIGFzc2lnbiBhcyBpZGVudGl0aWVzCmdlb19zbyRkYXkuY2VsbHR5cGUgPSBwYXN0ZShnZW9fc28kZGF5LCBnZW9fc28kY2VsbF90eXBlLCBzZXAgPSAnXycpCiMgY2hlY2sgbGFiZWxzCnVuaXF1ZShnZW9fc28kZGF5LmNlbGx0eXBlKQoKIyBSZXNldCBjZWxsIGlkZW50aXRpZXMgdG8gdGhlIGNvbWJpbmVkIGNvbmRpdGlvbiArIGNsdXN0ZXIgbGFiZWwKSWRlbnRzKGdlb19zbykgPSAnZGF5LmNlbGx0eXBlJwoKIyBydW4gY29tcGFyaXNvbiBmb3IgRDIxIHZzIEQwLCB1c2luZyB3aWxjb3hvbiB0ZXN0CmRlX2NlbGxfcGVyaWN5dGVfRDIxX3ZzX0Q3ID0gRmluZE1hcmtlcnMoCiAgICBvYmplY3QgPSBnZW9fc28sCiAgICBzbG90ID0gJ2RhdGEnLCB0ZXN0ID0gJ3dpbGNveCcsCiAgICBpZGVudC4xID0gJ0RheTIxX1BlcmljeXRlJywgaWRlbnQuMiA9ICdEYXk3X1BlcmljeXRlJykKCmhlYWQoZGVfY2VsbF9wZXJpY3l0ZV9EMjFfdnNfRDcpCgojIEFkZCByb3duYW1lcyBhcyBhIGNvbHVtbiBmb3Igb3V0cHV0CmRlX2NlbGxfcGVyaWN5dGVfRDIxX3ZzX0Q3JGdlbmUgPSByb3duYW1lcyhkZV9jZWxsX3BlcmljeXRlX0QyMV92c19ENykKCiMgc3VtbWFyaXplIG91ciByZXN1bHRzCnRhYmxlKGRlX2NlbGxfcGVyaWN5dGVfRDIxX3ZzX0Q3JHBfdmFsX2FkaiA8IDAuMDUgJiBhYnMoZGVfY2VsbF9wZXJpY3l0ZV9EMjFfdnNfRDckYXZnX2xvZzJGQykgPiAxLjUpCgp3cml0ZV9jc3YoZGVfY2VsbF9wZXJpY3l0ZV9EMjFfdnNfRDcsIGZpbGUgPSAncmVzdWx0cy90YWJsZXMvZGVfc3RhbmRhcmRfcGVyaWN5dGVfRDIxX3ZzX0Q3LmNzdicpCmBgYAoKSW4gdGhlIGZpcnN0IDMgbGluZXMgb2YgdGhlIGFib3ZlIGNvZGUgYmxvY2sgd2UgY2FuIHNlZSB0aGUgY2hhbmdlcyB0byB0aGUgc2NoZW1hdGljOgoKIVtJbWFnZTogU2NoZW1hdGljIGFmdGVyIHNldHRpbmcgdGhlIElkZW50cygpLl0oaW1hZ2VzL3NldXJhdF9zY2hlbWF0aWMvU2xpZGUxMy5wbmcpCgpOb3RlIC0gdGhlIGBhdmdfbG9nMkZDYCB0aHJlc2hvbGQgb2YgMS41IHdlIHVzZSBoZXJlIGFyZSBxdWl0ZSBzdHJpbmdlbnQgYXMgdGhlIGRlZmF1bHQgbG9nMkZDIHRocmVzaG9sZCBmb3IgdGhlIGZ1bmN0aW9uIGlzIDAuMjUuIEhvd2V2ZXIgdGhlIGRlZmF1bHQgdGhyZXNob2xkIGNvcnJlc3BvbmRzIHRvIG9ubHkgYSAxOSUgZGlmZmVyZW5jZSBpbiBSTkEgbGV2ZWxzLCB3aGljaCBpcyBxdWl0ZSBwZXJtaXNzaXZlLiAKCklmIHRoZXJlIGlzIGVub3VnaCB0aW1lIC0gd2UgY2FuIGFsc28gY29tcGFyZSBiZXR3ZWVuIGNlbGxzIGZyb20gdGhlIEQ3IGFuZCBEMCBjb25kaXRpb25zLgoKYGBge3IsIGRlX3dpbGNveDIsIG1lc3NhZ2UgPSBGQUxTRSwgd2FybmluZyA9IEZBTFNFfQojIENvbXBhcmUgcGVyaWN5dGUgY2x1c3RlciBENyB2IEQwIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KZGVfY2VsbF9wZXJpY3l0ZV9EN192c19EMCA9IEZpbmRNYXJrZXJzKAogICAgb2JqZWN0ID0gZ2VvX3NvLAogICAgc2xvdCA9ICdkYXRhJywgdGVzdCA9ICd3aWxjb3gnLAogICAgaWRlbnQuMSA9ICdEYXk3X1BlcmljeXRlJywgaWRlbnQuMiA9ICdEYXkwX1BlcmljeXRlJykKCmhlYWQoZGVfY2VsbF9wZXJpY3l0ZV9EN192c19EMCkKCiMgQWRkIHJvd25hbWVzIGFzIGEgY29sdW1uIGZvciBvdXRwdXQKZGVfY2VsbF9wZXJpY3l0ZV9EN192c19EMCRnZW5lID0gcm93bmFtZXMoZGVfY2VsbF9wZXJpY3l0ZV9EN192c19EMCkKCiMgc3VtbWFyaXplIHJlc3VsdHMKdGFibGUoZGVfY2VsbF9wZXJpY3l0ZV9EN192c19EMCRwX3ZhbF9hZGogPCAwLjA1ICYgYWJzKGRlX2NlbGxfcGVyaWN5dGVfRDdfdnNfRDAkYXZnX2xvZzJGQykgPiAxLjUpCmBgYAoKVGhpcyBzYW1lIGFwcHJvYWNoIGNhbiBiZSBleHRlbmRlZCB0byBydW4gcGFpcndpc2UgY29tcGFyaXNvbnMgYmV0d2VlbiBjb25kaXRpb25zIGZvciBlYWNoIGFubm90YXRlZCBjbHVzdGVyIG9mIGludGVyZXN0LgoKPCEtLSBhZGQgY29kZSB0byBsb29wIHRocm91Z2ggYWxsIGNsdXN0ZXJzIGFuZCBnZW5lcmF0ZSBjb21wYXJpc29ucyAtLT4KCiMjIFBzZXVkb2J1bGsgY29tcGFyaXNvbnMKCjwhLS0gWzEweCBhbmFseXNpcyBndWlkZSBmb3IgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gd2l0aCBiaW9sb2dpY2FsIHJlcGxpY2F0ZXNdKGh0dHBzOi8vd3d3LjEweGdlbm9taWNzLmNvbS9hbmFseXNpcy1ndWlkZXMvZGlmZmVyZW50aWFsLWdlbmUtZXhwcmVzc2lvbi1hbmFseXNpcy1pbi1zY3JuYS1zZXEtZGF0YS1iZXR3ZWVuLWNvbmRpdGlvbnMtd2l0aC1iaW9sb2dpY2FsLXJlcGxpY2F0ZXMpIC0tPgoKPCEtLSBbT3V5YW5nXShodHRwczovL291eWFuZ2xhYi5jb20vc2luZ2xlY2VsbC9jbHVzdC5odG1sI3NlYzpkaWZmZXhwcikgRm9yIChpaSksIHNpbmdsZS1jZWxsIHN0dWRpZXMgYXJlIG5vdyBtb3JlIGNvbXBsZXgsIG9mdGVuIGluY2x1ZGluZyBzYW1wbGVzIGZyb20gbXVsdGlwbGUgZG9ub3JzLiBJdCBpcyBwb3NzaWJsZSB0aGF0IHRoZXJlIGFyZSBtb3JlIGNlbGxzIGJlaW5nIHByb2ZpbGVkIGZyb20gYSBzcGVjaWZpYyBkb25vciB0aGFuIG90aGVycyBhbmQgdGhpcyBjYW4gc2tldyB0aGUgREUgcmVzdWx0cy4gRm9yIGV4YW1wbGUsIGNvbnNpZGVyIGEgc3R1ZHkgd2hlcmUgdGhlcmUgYXJlIHRocmVlIGRpc2Vhc2VkIHNhbXBsZXMgKEQxLEQyLEQzKSBhbmQgdGhyZWUgaGVhbHRoeSBzYW1wbGVzIChIMSxIMixIM18gYW5kIHRoZXJlIGFyZSBhIGxvdCBtb3JlIGNlbGxzIGZyb20gc2FtcGxlIEQxLiBJbiB0aGlzIHNjZW5hcmlvLCBhIGdlbmUgdGhhdCBpcyBzcGVjaWZpY2FsbHkgZXhwcmVzc2VkIGluIEQxIG1heSBiZSBpZGVudGlmaWVkIGFzIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCB3aGVuIGNvbXBhcmluZyBkaXNlYXNlZCBhbmQgaGVhbHRoeSBzaW5nbGUtY2VsbHMuIEluIGZhY3QsIFNxdWFpciBldCBhbC4gaGF2ZSBzaG93biB0aGF0IGlnbm9yaW5nIGJpb2xvZ2ljYWwgcmVwbGljYXRlcyBjYW4gb2Z0ZW4gcmVzdWx0IGluIGZhbHNlIGRpc2NvdmVyaWVzIGluIHNpbmdsZS1jZWxsIERFIChTcXVhaXIgZXQgYWwuIDIwMjEpLiBUbyBjaXJjdW12ZW50IHRoaXMsIFNxdWFpciBldCBhbC4gc3VnZ2VzdGVkIHRoZSB1c2Ugb2YgcHNldWRvLWJ1bGsgcHJvZmlsZXMgd2hlcmUgdGhlIHNpbmdsZS1jZWxsIHByb2ZpbGVzIGZyb20gZWFjaCBpbmRpdmlkdWFsIGlzIGJlaW5nIGNvbGxlY3RlZCBhbmQgdGhlbiBzdWJqZWN0ZWQgdG8gYnVsayBSTkEtc2VxIGJhc2VkIERFIG1ldGhvZHMuIEFub3RoZXIgcG9zc2libGUgYXBwcm9hY2ggaXMgdG8gZG93bnNhbXBsZSB0aGUgbnVtYmVyIG9mIHNpbmdsZSBjZWxscyBzdWNoIHRoYXQgZWFjaCBpbmRpdmlkdWFsIGhhdmUgcm91Z2hseSBhIHNpbWlsYXIgbnVtYmVyIG9mIGNlbGxzLiAtLT4KCldpdGggYWR2YW5jZXMgaW4gdGhlIHRlY2hub2xvZ3kgYXMgd2VsbCBhcyBkZWNyZWFzZWQgc2VxdWVuY2luZyBjb3N0cyBhbGxvd2luZyBmb3IgbGFyZ2VyIHNjYWxlIHNpbmdsZS1jZWxsIGV4cGVyaW1lbnRzICh0aGF0IGluY2x1ZGUgcmVwbGljYXRlcyksIGFsb25nIHdpdGggYSBzdHVkeSBieSBbU3F1YWlyIGV0IGFsICgyMDIxKV0oaHR0cHM6Ly93d3cubmF0dXJlLmNvbS9hcnRpY2xlcy9zNDE0NjctMDIxLTI1OTYwLTIpIHRoYXQgaGlnaGxpZ2h0ZWQgdGhlIHBvc3NpYmlsaXR5IG9mIGluZmxhdGVkIGZhbHNlIGRpc2NvdmVyeSByYXRlcyBmb3IgdGhlIGNlbGwtbGV2ZWwgYXBwcm9hY2hlcyBzaW5jZSBjZWxscyBpc29sYXRlZCBmcm9tIHRoZSBzYW1lIHNhbXBsZSBhcmUgdW5saWtlbHkgdG8gYmUgc3RhdGlzdGljYWxseSBpbmRlcGVuZGVudCBbc291cmNlXShodHRwczovL3d3dy5zYy1iZXN0LXByYWN0aWNlcy5vcmcvY29uZGl0aW9ucy9kaWZmZXJlbnRpYWxfZ2VuZV9leHByZXNzaW9uLmh0bWwpIHRoZSB1c2Ugb2Ygc2FtcGxlLWxldmVsIG9yICJwc3VlZG9idWxrIiBjYW4gYmUgYWR2YW50YWdlb3VzLiAKCjwhLS0gYWRkIFVNQVAgd2l0aCBmYWNldHMgYnkgc2FtcGxlIHRvIHNob3cgd2hhdCdzIGJlaW5nIGNvbXBhcmVkPyAtLT4KCldlJ2xsIHJ1biBwc3VlZG9idWxrIGNvbXBhcmlzb25zIGZvciBvdXIgZGF0YSBmb3IgdGhlIG1vbm9jeXRlIGNsdXN0ZXIsIHN0YXJ0aW5nIHdpdGggdGhlIEQyMSB2cyBEMCBjb25kaXRpb25zLiBXZSdsbCBuZWVkIHRvIGdlbmVyYXRlIHRoZSBhZ2dyZWdhdGVkIGNvdW50cyBmaXJzdCAoZW5zdXJpbmcgdGhhdCB3ZSBhcmUgZ3JvdXBpbmcgY2VsbHMgYnkgcmVwbGljYXRlIGxhYmVscyksIGJlZm9yZSBsYWJlbGluZyB0aGUgY2VsbHMgdG8gcmVmbGVjdCB0aGUgY2x1c3RlciBhbmQgY29uZGl0aW9uLiBUaGVuIHdlIHdpbGwgcnVuIG91ciBjb21wYXJpc29uIHVzaW5nIGBGaW5kTWFya2VyKClgIGJ1dCBzcGVjaWZ5aW5nIERFU2VxMiBhcyBvdXIgbWV0aG9kIGJlZm9yZSBzdW1tYXJpemluZyB0aGUgcmVzdWx0czoKCmBgYHtyLCBkZV9wc2V1ZG9idWxrLCBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRX0KIyBDcmVhdGUgcHNldWRvYnVsayBvYmplY3QgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpwc2V1ZG9fY2F0Y2hfc28gPSBBZ2dyZWdhdGVFeHByZXNzaW9uKGdlb19zbywgYXNzYXlzID0gJ1JOQScsIHJldHVybi5zZXVyYXQgPSBUUlVFLCBncm91cC5ieSA9IGMoJ2NlbGxfdHlwZScsICdkYXknLCAncmVwbGljYXRlJykpCgojIFNldCB1cCBsYWJlbHMgdG8gdXNlIGZvciBjb21wYXJpc29ucyAmIGFzc2lnbiBhcyBjZWxsIGlkZW50aXRpZXMKcHNldWRvX2NhdGNoX3NvJGRheS5jZWxsdHlwZSA9IHBhc3RlKHBzZXVkb19jYXRjaF9zbyRkYXksIHBzZXVkb19jYXRjaF9zbyRjZWxsX3R5cGUsIHNlcCA9ICdfJykKSWRlbnRzKHBzZXVkb19jYXRjaF9zbykgPSAnZGF5LmNlbGx0eXBlJwoKIyBSdW4gcHNldWRvYnVsayBjb21wYXJpc29uIGJldHdlZW4gRGF5IDIxIGFuZCBEYXkgMCwgdXNpbmcgREVTZXEyCmRlX3BzZXVkb19wZXJpY3l0ZV9EMjFfdnNfRDcgPSBGaW5kTWFya2VycygKICAgIG9iamVjdCA9IHBzZXVkb19jYXRjaF9zbywgCiAgICBpZGVudC4xID0gJ0RheTIxX1BlcmljeXRlJywgaWRlbnQuMiA9ICdEYXk3X1BlcmljeXRlJywgCiAgICB0ZXN0LnVzZSA9ICdERVNlcTInKQoKIyBUYWtlIGEgbG9vayBhdCB0aGUgdGFibGUKaGVhZChkZV9wc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3KQoKIyBBZGQgcm93bmFtZXMgYXMgYSBjb2x1bW4gZm9yIG91dHB1dApkZV9wc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3JGdlbmUgPSByb3duYW1lcyhkZV9wc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3KQoKIyBsb29rIGF0IHJlc3VsdHMsIHVzaW5nIHRoZSBzYW1lIHRocmVzaG9sZHMKdGFibGUoZGVfcHNldWRvX3BlcmljeXRlX0QyMV92c19ENyRwX3ZhbF9hZGogPCAwLjA1ICYgYWJzKGRlX3BzZXVkb19wZXJpY3l0ZV9EMjFfdnNfRDckYXZnX2xvZzJGQykgPiAxLjUpCgojIG91dHB1dCByZXN1bHRzCndyaXRlX2NzdihkZV9wc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3LCBmaWxlID0gJ3Jlc3VsdHMvdGFibGVzL2RlX3BzZXVkb19wZXJpY3l0ZV9EMjFfdnNfRDcuY3N2JykKYGBgCgoKU2luY2Ugd2UncmUgd29ya2luZyB3aXRoIHBzZXVkb2J1bGsgZGF0YSwgdW5saWtlIGluIHRoZSBtYXJrZXIgaWRlbnRpZmljYXRpb24gc2VjdGlvbiwgdGhlcmUgaXMgbm8gcGVyY2VudGFnZSBvZiBjZWxscyBleHByZXNzaW5nIHRvIG5lZWQgdG8gcmVwcmVzZW50IHNvIHdlIGNhbiBzdW1tYXJpemUgb3VyIERFIHJlc3VsdHMgd2l0aCBhIHZvbGNhbm8gcGxvdDoKCmBgYHtyLCBkZV9wc2V1ZG9idWxrX3ZvbGNhbm8sIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQojIE1ha2UgYSB2b2xjYW5vIHBsb3Qgb2YgcHNldWRvYnVsayBkaWZmZXggcmVzdWx0cyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KcHNldWRvX3BlcmljeXRlX0QyMV92c19EN192b2xjYW5vID0gZ2dwbG90KGRlX3BzZXVkb19wZXJpY3l0ZV9EMjFfdnNfRDcsIGFlcyh4ID0gYXZnX2xvZzJGQywgeSA9IC1sb2cxMChwX3ZhbCkpKSArIGdlb21fcG9pbnQoKQpwc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3X3ZvbGNhbm8KCmdnc2F2ZShmaWxlbmFtZSA9ICdyZXN1bHRzL2ZpZ3VyZXMvdm9sY2Fub19kZV9wc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0QwLnBuZycsIHBsb3QgPSBwc2V1ZG9fcGVyaWN5dGVfRDIxX3ZzX0Q3X3ZvbGNhbm8sIHdpZHRoID0gNywgaGVpZ2h0ID0gNywgdW5pdHMgPSAnaW4nKQpgYGAKPCEtLS0gCiMjIyBJdGVyYXRpbmcgb3ZlciBhbGwgY2x1c3RlcnMKCkFkZCBjb2RlIHRvIGdlbmVyYXRlIHBzZXVkb2J1bGsgcmVzdWx0cyBmb3IgZWFjaCBjbHVzdGVyIGZvciBhbGwgRGF5IDcgdnMgRGF5IDIxIGNvbXBhcmlzb25zCi0tLT4KCiMjIyBGdXJ0aGVyIGV4YW1pbmluZyBERSByZXN1bHRzCgpXZSBjYW4gYWxzbyBvdmVybGF5IHRoZSBleHByZXNzaW9uIG9mIGludGVyZXN0aW5nIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCBnZW5lcyBiYWNrIG9udG8gb3VyIFVNQVAgcGxvdHMgdG8gaGlnaGxpZ2h0IHRoZSBsb2NhbGl6YXRpb24gYW5kIHBvc3NpYmxlIGZ1bmN0aW9uLCBhZ2FpbiB1c2luZyB0aGUgYEZlYXR1cmVQbG90YCBmdW5jdGlvbi4gCgpgYGB7ciwgc2hvd19ERV9mZWF0dXJlUGxvdCwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UsIG91dC5oZWlnaHQ9JzYwJSd9CiMgVU1BUCBmZWF0dXJlIHBsb3Qgb2YgQ2Q1NSBnZW5lIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpGZWF0dXJlUGxvdChnZW9fc28sIGZlYXR1cmVzID0gIkNkNTUiLCBzcGxpdC5ieSA9ICJkYXkiKQpgYGAKU28gd2UgZm91bmQgQ2Q1NSBiYXNlZCBvbiBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBjb21wYXJpc29uIGluIHRoZSBQZXJpY3l0ZSBwb3B1bGF0aW9uIGJldHdlZW4gRGF5IDcgYW5kIERheSAyMSBidXQgaW4gbG9va2luZyBhdCB0aGUgRmVhdHVyZSBwbG90IG9mIGV4cHJlc3Npb24sIHdlIGFsc28gc2VlIGhpZ2ggZXhwcmVzc2lvbiBpbiBhIHN1YnNldCBvZiBjZWxscyBvbiBEYXkgMC4gVGhpcyBpbnRlcmVzdGluZywgc2luY2UgYWNjb3JkaW5nIHRvIFtTaGluIGV0IGFsICgyMDE5KV0oaHR0cHM6Ly9vbmxpbmVsaWJyYXJ5LndpbGV5LmNvbS9kb2kvZnVsbC8xMC4xMDAyL2pibXIuMzg2MSksIENENTUgcmVndWxhdGVzIGJvbmUgbWFzcyBpbiBtaWNlLgoKSXQgYWxzbyBsb29rcyBsaWtlIHRoZXJlIGlzIGEgaGlnaCBwZXJjZW50YWdlIG9mIGV4cHJlc3Npb24gaW4gc29tZSBvZiB0aGUgb3RoZXIgcHJlY3Vyc29yIHBvcHVsYXRpb25zIG9uIHRoZSB0b3AgcmlnaHQgb2Ygb3VyIHBsb3RzLCB3aGljaCBpcyBpbnRlcmVzdGluZyBhbmQgbWlnaHQgc3VnZ2VzdCBhbiBpbnRlcmVzdGluZyBzdWJwb3B1bGF0aW9uIHRoYXQgd2UgbWlnaHQgdHJ5IHRvIGlkZW50aWZ5LCBwYXJ0aWN1bGFybHkgZ2l2ZW4gdGhlIHJvbGUgb2YgdGhpcyBnZW5lIGFuZCBvdXIgaW50ZXJlc3QgaW4gZGV0ZXJtaW5pbmcgd2h5IGFiYmVyYW50IGJvbmUgY2FuIGZvcm0gYWZ0ZXIgaW5qdXJ5LgoKIyMgTmV4dCBzdGVwcyAKCldoaWxlIGxvb2tpbmcgYXQgaW5kaXZpZHVhbCBnZW5lcyBjYW4gcmV2ZWFsIGludGVyZXN0aW5nIHBhdHRlcm5zIGxpa2UgaW4gdGhlIGNhc2Ugb2YgQ2Q1NSwgaXQncyBub3QgYSB2ZXJ5IGVmZmljaWVudCBwcm9jZXNzLiBTbyBhZnRlciBydW5uaW5nICdzdGFuZGFyZCcgYW5kL29yIHBzdWVkb2J1bGsgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gY29tcGFyaXNvbnMsIHdlIGNhbiB1c2UgdGhlIHNhbWUgdHlwZXMgb2YgdG9vbHMgdXNlZCBkb3duc3RyZWFtIG9mIGJ1bGsgUk5BLXNlcSB0byBpbnRlcnByZXQgdGhlc2UgcmVzdWx0cywgc3VjaCBhcyBHTyB0ZXJtIGVucmljaG1lbnQsIEtFR0cgcGF0aHdheSBlbnJpY2htZW50LCBhbmQgR1NFQSB3aXRoIG1TaWdEQi4gCgoKIyBTYXZlIG91ciBwcm9ncmVzcwoKV2UnbGwgc2F2ZSB0aGUgc2NDQVRDSCBvYmplY3QuIFRoZSBTZXVyYXQgb2JqZWN0IGhhcyBub3QgYmVlbiBjaGFuZ2VkIGluIHRoaXMgbW9kdWxlLgoKYGBge3IsIHNhdmVfcmRzX2hpZGRlbiwgZWNobyA9IEZBTFNFfQppZighZmlsZS5leGlzdHMoJ3Jlc3VsdHMvcmRhdGEvZ2VvX3NvX3NjdF9pbnRlZ3JhdGVkX3dpdGhfZmluYWwucmRzJykpIHsKICBzYXZlUkRTKGdlb19zbywgZmlsZSA9ICdyZXN1bHRzL3JkYXRhL2dlb19zb19zY3RfaW50ZWdyYXRlZF9maW5hbC5yZHMnKQp9CmBgYAoKYGBge3IsIHNhdmVfcmRzLCBldmFsPUZBTFNFfQojIFNhdmUgU2V1cmF0IG9iamVjdCAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0Kc2F2ZVJEUyhnZW9fc28sIGZpbGUgPSAncmVzdWx0cy9yZGF0YS9nZW9fc29fc2N0X2ludGVncmF0ZWRfZmluYWwucmRzJykKYGBgCgotLS0KCiMgRG93bnN0cmVhbSBhcHByb2FjaGVzCgpCZXlvbmQgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gd2l0aGluIGNsdXN0ZXJzIGFuZCAsIHRoZXJlIGFyZSBtYW55IG90aGVyIHBvc3NpYmxlIGF2ZW51ZXMgb2YgZXhwbG9yYXRpb24gYW5kIGFuYWx5c2lzIGZvciBzY1JOQS1zZXEgZGF0YS4gSW5jbHVkaW5nLCBidXQgbm90IGxpbWl0ZWQgdG86CgotIEludGVncmF0aW9uIHdpdGggb3RoZXIgbW9kYWxpdGllcyAoZS5nLiBBVEFDLXNlcSwgVkRKLCBldGMuKQoKLSBTdWJjbHVzdGVyaW5nIGNsdXN0ZXJzIG9mIGludGVyZXN0LCBzZWUgW0hCQydzIHN1bW1hcnkgb24gc3ViY2x1c3RlcmluZ10oaHR0cHM6Ly9oYmN0cmFpbmluZy5naXRodWIuaW8vc2NSTkEtc2VxX29ubGluZS9sZXNzb25zL3NldXJhdF9zdWJjbHVzdGVyaW5nLmh0bWwpLCBbU2V1cmF0J3MgZmluZFN1YmNDbHVzdGVyIGRvY3VtZW50YXRpb25dKGh0dHBzOi8vc2F0aWphbGFiLm9yZy9zZXVyYXQvcmVmZXJlbmNlL2ZpbmRzdWJjbHVzdGVyKSBhbmQgW3RoaXMgcmVsYXRlZCBpc3N1ZSB0aHJlYWRdKGh0dHBzOi8vZ2l0aHViLmNvbS9zYXRpamFsYWIvc2V1cmF0L2lzc3Vlcy8xODgzKSAgCgotIFRyYWplY3Rvcnkgb3IgUHNldWRvdGltZSBhbmFseXNpcywgc2VlW091eWFuZyBMYWIncyB0cmFqZWN0b3J5IGFuYWx5c2lzXShodHRwczovL291eWFuZ2xhYi5jb20vc2luZ2xlY2VsbC9kaW1yZC5odG1sKSBvciBbQnJvYWQgSW5zdGl0dXRlJ3MgbWF0ZXJpYWxzIG9uIHRyYWplY3RvcnkgYW5hbHlzaXNdKGh0dHBzOi8vYnJvYWRpbnN0aXR1dGUuZ2l0aHViLmlvLzIwMjBfc2NXb3Jrc2hvcC90cmFqZWN0b3J5LWFuYWx5c2lzLmh0bWwpLCBhbW9uZyBvdGhlciByZXNvdXJjZXMgICAgCgotIENlbGwgLSBDZWxsIGNvbW11bmljYXRpb24gbmV0d29yayBpbmZlcmVuY2UsIHNlZSBbcmV2aWV3IGJ5IFdpbGsgZXQgYWwgKDIwMjMpXShodHRwczovL3d3dy5uYXR1cmUuY29tL2FydGljbGVzL3M0MTU4Ny0wMjMtMDE3ODIteikKCi0gVmVsb2NpdHkgYW5hbHlzaXMgKG5vdGU6IG5vdCBjb21wYXRpYmxlIHdpdGggdGhlIGZsZXggcHJvYmUgYmFzZWQga2l0cyksIHNlZSBbdGhlIGNoYXB0ZXIgZnJvbSB0aGUgc2luZ2xlLWNlbGxzIGJlc3QgcHJhY3RpY2VzIGJvb2tdKGh0dHBzOi8vd3d3LnNjLWJlc3QtcHJhY3RpY2VzLm9yZy90cmFqZWN0b3JpZXMvcm5hX3ZlbG9jaXR5Lmh0bWwpIGZvciBkZXRhaWxlZCB0aGVvcnkvbW9kZWxpbmcgb3IgdGhlIFsxMHggZGF0YSB2aWduZXR0ZSBmb3IgdmVsb2N5dG9dKGh0dHBzOi8vcGtsYWIubWVkLmhhcnZhcmQuZWR1L3ZlbG9jeXRvL25vdGVib29rcy9SL1NDRzcxLm5iLmh0bWwpIGZvciBhIHByYWN0aWNhbCBleGFtcGxlIGluIFIKCldlIHdvdWxkIHJlY29tbWVuZCBsb29raW5nIGZvciBzdHVkaWVzIGluIHNpbWlsYXIgdGlzc3VlcyBvciBleHBlcmltZW50YWwgcXVlc3Rpb25zIGFuZCBzZWUgd2hhdCBraW5kIG9mIGFwcHJvYWNoZXMgYW5kIHRvb2xzIHdlcmUgdXNlZCB0byBhbnN3ZXIgcXVlc3Rpb25zIHJlbGF0ZWQgdG8geW91ciBiaW9sb2dpY2FsIHF1ZXN0aW9uCgojIFN1bW1hcnkKClJldmlld2luZyB0aGVzZSByZXN1bHRzIHNob3VsZCBhbGxvdyB1cyB0byBpZGVudGlmeSBnZW5lcyBvZiBpbnRlcmVzdCB0aGF0IGFyZSBpbXBhY3RlZCBieSBpbmp1cnkgYW5kIGluIHRoZSBjb250ZXh0IG9mIHRoZSBjZWxsLXR5cGVzIGluIHdoaWNoIHRoZXkgYXJlIGRpZmZlcmVudGlhbGx5IGV4cHJlc3NlZCwgZm9ybWFsaXplIHNvbWUgaHlwb3RoZXNlcyBmb3Igd2hhdCBjZWxsLXR5cGVzIG9yIGJpb2xvZ2ljYWwgcHJvY2Vzc2VzIG1pZ2h0IGJlIGNvbnRyaWJ1dGluZyB0byBhYmVycmFudCBib25lIGZvcm1hdGlvbi4gCgotLS0tCgpUaGVzZSBtYXRlcmlhbHMgaGF2ZSBiZWVuIGFkYXB0ZWQgYW5kIGV4dGVuZGVkIGZyb20gbWF0ZXJpYWxzIGxpc3RlZCBhYm92ZS4gVGhlc2UgYXJlIG9wZW4gYWNjZXNzIG1hdGVyaWFscyBkaXN0cmlidXRlZCB1bmRlciB0aGUgdGVybXMgb2YgdGhlIFtDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uIGxpY2Vuc2UgKENDIEJZIDQuMCldKGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LzQuMC8pLCB3aGljaCBwZXJtaXRzIHVucmVzdHJpY3RlZCB1c2UsIGRpc3RyaWJ1dGlvbiwgYW5kIHJlcHJvZHVjdGlvbiBpbiBhbnkgbWVkaXVtLCBwcm92aWRlZCB0aGUgb3JpZ2luYWwgYXV0aG9yIGFuZCBzb3VyY2UgYXJlIGNyZWRpdGVkLgoKPGJyLz4KPGJyLz4KPGhyLz4KfCBbUHJldmlvdXMgbGVzc29uXSgwNy1DZWxsVHlwZUFubm9zLmh0bWwpIHwgW1RvcCBvZiB0aGlzIGxlc3Nvbl0oI3RvcCkgfCBbV29ya3Nob3AgV3JhcCBVcF0od29ya3Nob3Bfd3JhcF91cC5odG1sKSB8CnwgOi0tLSB8IDotLS0tOiB8IC0tLTogfAo=